Metamath Proof Explorer
Description: Membership in a centralizer. (Contributed by Stefan O'Rear, 6-Sep-2015)
|
|
Ref |
Expression |
|
Hypotheses |
cntzfval.b |
⊢ 𝐵 = ( Base ‘ 𝑀 ) |
|
|
cntzfval.p |
⊢ + = ( +g ‘ 𝑀 ) |
|
|
cntzfval.z |
⊢ 𝑍 = ( Cntz ‘ 𝑀 ) |
|
Assertion |
cntzel |
⊢ ( ( 𝑆 ⊆ 𝐵 ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 ∈ ( 𝑍 ‘ 𝑆 ) ↔ ∀ 𝑦 ∈ 𝑆 ( 𝑋 + 𝑦 ) = ( 𝑦 + 𝑋 ) ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
cntzfval.b |
⊢ 𝐵 = ( Base ‘ 𝑀 ) |
2 |
|
cntzfval.p |
⊢ + = ( +g ‘ 𝑀 ) |
3 |
|
cntzfval.z |
⊢ 𝑍 = ( Cntz ‘ 𝑀 ) |
4 |
1 2 3
|
elcntz |
⊢ ( 𝑆 ⊆ 𝐵 → ( 𝑋 ∈ ( 𝑍 ‘ 𝑆 ) ↔ ( 𝑋 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝑆 ( 𝑋 + 𝑦 ) = ( 𝑦 + 𝑋 ) ) ) ) |
5 |
4
|
baibd |
⊢ ( ( 𝑆 ⊆ 𝐵 ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 ∈ ( 𝑍 ‘ 𝑆 ) ↔ ∀ 𝑦 ∈ 𝑆 ( 𝑋 + 𝑦 ) = ( 𝑦 + 𝑋 ) ) ) |