Metamath Proof Explorer


Theorem cntzel

Description: Membership in a centralizer. (Contributed by Stefan O'Rear, 6-Sep-2015)

Ref Expression
Hypotheses cntzfval.b 𝐵 = ( Base ‘ 𝑀 )
cntzfval.p + = ( +g𝑀 )
cntzfval.z 𝑍 = ( Cntz ‘ 𝑀 )
Assertion cntzel ( ( 𝑆𝐵𝑋𝐵 ) → ( 𝑋 ∈ ( 𝑍𝑆 ) ↔ ∀ 𝑦𝑆 ( 𝑋 + 𝑦 ) = ( 𝑦 + 𝑋 ) ) )

Proof

Step Hyp Ref Expression
1 cntzfval.b 𝐵 = ( Base ‘ 𝑀 )
2 cntzfval.p + = ( +g𝑀 )
3 cntzfval.z 𝑍 = ( Cntz ‘ 𝑀 )
4 1 2 3 elcntz ( 𝑆𝐵 → ( 𝑋 ∈ ( 𝑍𝑆 ) ↔ ( 𝑋𝐵 ∧ ∀ 𝑦𝑆 ( 𝑋 + 𝑦 ) = ( 𝑦 + 𝑋 ) ) ) )
5 4 baibd ( ( 𝑆𝐵𝑋𝐵 ) → ( 𝑋 ∈ ( 𝑍𝑆 ) ↔ ∀ 𝑦𝑆 ( 𝑋 + 𝑦 ) = ( 𝑦 + 𝑋 ) ) )