Step |
Hyp |
Ref |
Expression |
1 |
|
cntzfval.b |
⊢ 𝐵 = ( Base ‘ 𝑀 ) |
2 |
|
cntzfval.p |
⊢ + = ( +g ‘ 𝑀 ) |
3 |
|
cntzfval.z |
⊢ 𝑍 = ( Cntz ‘ 𝑀 ) |
4 |
|
elex |
⊢ ( 𝑀 ∈ 𝑉 → 𝑀 ∈ V ) |
5 |
|
fveq2 |
⊢ ( 𝑚 = 𝑀 → ( Base ‘ 𝑚 ) = ( Base ‘ 𝑀 ) ) |
6 |
5 1
|
eqtr4di |
⊢ ( 𝑚 = 𝑀 → ( Base ‘ 𝑚 ) = 𝐵 ) |
7 |
6
|
pweqd |
⊢ ( 𝑚 = 𝑀 → 𝒫 ( Base ‘ 𝑚 ) = 𝒫 𝐵 ) |
8 |
|
fveq2 |
⊢ ( 𝑚 = 𝑀 → ( +g ‘ 𝑚 ) = ( +g ‘ 𝑀 ) ) |
9 |
8 2
|
eqtr4di |
⊢ ( 𝑚 = 𝑀 → ( +g ‘ 𝑚 ) = + ) |
10 |
9
|
oveqd |
⊢ ( 𝑚 = 𝑀 → ( 𝑥 ( +g ‘ 𝑚 ) 𝑦 ) = ( 𝑥 + 𝑦 ) ) |
11 |
9
|
oveqd |
⊢ ( 𝑚 = 𝑀 → ( 𝑦 ( +g ‘ 𝑚 ) 𝑥 ) = ( 𝑦 + 𝑥 ) ) |
12 |
10 11
|
eqeq12d |
⊢ ( 𝑚 = 𝑀 → ( ( 𝑥 ( +g ‘ 𝑚 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑚 ) 𝑥 ) ↔ ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) ) ) |
13 |
12
|
ralbidv |
⊢ ( 𝑚 = 𝑀 → ( ∀ 𝑦 ∈ 𝑠 ( 𝑥 ( +g ‘ 𝑚 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑚 ) 𝑥 ) ↔ ∀ 𝑦 ∈ 𝑠 ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) ) ) |
14 |
6 13
|
rabeqbidv |
⊢ ( 𝑚 = 𝑀 → { 𝑥 ∈ ( Base ‘ 𝑚 ) ∣ ∀ 𝑦 ∈ 𝑠 ( 𝑥 ( +g ‘ 𝑚 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑚 ) 𝑥 ) } = { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝑠 ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) } ) |
15 |
7 14
|
mpteq12dv |
⊢ ( 𝑚 = 𝑀 → ( 𝑠 ∈ 𝒫 ( Base ‘ 𝑚 ) ↦ { 𝑥 ∈ ( Base ‘ 𝑚 ) ∣ ∀ 𝑦 ∈ 𝑠 ( 𝑥 ( +g ‘ 𝑚 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑚 ) 𝑥 ) } ) = ( 𝑠 ∈ 𝒫 𝐵 ↦ { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝑠 ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) } ) ) |
16 |
|
df-cntz |
⊢ Cntz = ( 𝑚 ∈ V ↦ ( 𝑠 ∈ 𝒫 ( Base ‘ 𝑚 ) ↦ { 𝑥 ∈ ( Base ‘ 𝑚 ) ∣ ∀ 𝑦 ∈ 𝑠 ( 𝑥 ( +g ‘ 𝑚 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑚 ) 𝑥 ) } ) ) |
17 |
1
|
fvexi |
⊢ 𝐵 ∈ V |
18 |
17
|
pwex |
⊢ 𝒫 𝐵 ∈ V |
19 |
18
|
mptex |
⊢ ( 𝑠 ∈ 𝒫 𝐵 ↦ { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝑠 ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) } ) ∈ V |
20 |
15 16 19
|
fvmpt |
⊢ ( 𝑀 ∈ V → ( Cntz ‘ 𝑀 ) = ( 𝑠 ∈ 𝒫 𝐵 ↦ { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝑠 ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) } ) ) |
21 |
4 20
|
syl |
⊢ ( 𝑀 ∈ 𝑉 → ( Cntz ‘ 𝑀 ) = ( 𝑠 ∈ 𝒫 𝐵 ↦ { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝑠 ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) } ) ) |
22 |
3 21
|
eqtrid |
⊢ ( 𝑀 ∈ 𝑉 → 𝑍 = ( 𝑠 ∈ 𝒫 𝐵 ↦ { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝑠 ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) } ) ) |