Step |
Hyp |
Ref |
Expression |
1 |
|
cntzi.p |
⊢ + = ( +g ‘ 𝑀 ) |
2 |
|
cntzi.z |
⊢ 𝑍 = ( Cntz ‘ 𝑀 ) |
3 |
|
eqid |
⊢ ( Base ‘ 𝑀 ) = ( Base ‘ 𝑀 ) |
4 |
3 2
|
cntzrcl |
⊢ ( 𝑋 ∈ ( 𝑍 ‘ 𝑆 ) → ( 𝑀 ∈ V ∧ 𝑆 ⊆ ( Base ‘ 𝑀 ) ) ) |
5 |
3 1 2
|
elcntz |
⊢ ( 𝑆 ⊆ ( Base ‘ 𝑀 ) → ( 𝑋 ∈ ( 𝑍 ‘ 𝑆 ) ↔ ( 𝑋 ∈ ( Base ‘ 𝑀 ) ∧ ∀ 𝑦 ∈ 𝑆 ( 𝑋 + 𝑦 ) = ( 𝑦 + 𝑋 ) ) ) ) |
6 |
4 5
|
simpl2im |
⊢ ( 𝑋 ∈ ( 𝑍 ‘ 𝑆 ) → ( 𝑋 ∈ ( 𝑍 ‘ 𝑆 ) ↔ ( 𝑋 ∈ ( Base ‘ 𝑀 ) ∧ ∀ 𝑦 ∈ 𝑆 ( 𝑋 + 𝑦 ) = ( 𝑦 + 𝑋 ) ) ) ) |
7 |
6
|
simplbda |
⊢ ( ( 𝑋 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑋 ∈ ( 𝑍 ‘ 𝑆 ) ) → ∀ 𝑦 ∈ 𝑆 ( 𝑋 + 𝑦 ) = ( 𝑦 + 𝑋 ) ) |
8 |
7
|
anidms |
⊢ ( 𝑋 ∈ ( 𝑍 ‘ 𝑆 ) → ∀ 𝑦 ∈ 𝑆 ( 𝑋 + 𝑦 ) = ( 𝑦 + 𝑋 ) ) |
9 |
|
oveq2 |
⊢ ( 𝑦 = 𝑌 → ( 𝑋 + 𝑦 ) = ( 𝑋 + 𝑌 ) ) |
10 |
|
oveq1 |
⊢ ( 𝑦 = 𝑌 → ( 𝑦 + 𝑋 ) = ( 𝑌 + 𝑋 ) ) |
11 |
9 10
|
eqeq12d |
⊢ ( 𝑦 = 𝑌 → ( ( 𝑋 + 𝑦 ) = ( 𝑦 + 𝑋 ) ↔ ( 𝑋 + 𝑌 ) = ( 𝑌 + 𝑋 ) ) ) |
12 |
11
|
rspccva |
⊢ ( ( ∀ 𝑦 ∈ 𝑆 ( 𝑋 + 𝑦 ) = ( 𝑦 + 𝑋 ) ∧ 𝑌 ∈ 𝑆 ) → ( 𝑋 + 𝑌 ) = ( 𝑌 + 𝑋 ) ) |
13 |
8 12
|
sylan |
⊢ ( ( 𝑋 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑌 ∈ 𝑆 ) → ( 𝑋 + 𝑌 ) = ( 𝑌 + 𝑋 ) ) |