| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cntzmhm.z |
⊢ 𝑍 = ( Cntz ‘ 𝐺 ) |
| 2 |
|
simpr |
⊢ ( ( 𝑆 ⊆ ( 𝑍 ‘ 𝑆 ) ∧ 𝑇 ⊆ 𝑆 ) → 𝑇 ⊆ 𝑆 ) |
| 3 |
|
simpl |
⊢ ( ( 𝑆 ⊆ ( 𝑍 ‘ 𝑆 ) ∧ 𝑇 ⊆ 𝑆 ) → 𝑆 ⊆ ( 𝑍 ‘ 𝑆 ) ) |
| 4 |
|
eqid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) |
| 5 |
4 1
|
cntzssv |
⊢ ( 𝑍 ‘ 𝑆 ) ⊆ ( Base ‘ 𝐺 ) |
| 6 |
3 5
|
sstrdi |
⊢ ( ( 𝑆 ⊆ ( 𝑍 ‘ 𝑆 ) ∧ 𝑇 ⊆ 𝑆 ) → 𝑆 ⊆ ( Base ‘ 𝐺 ) ) |
| 7 |
4 1
|
cntz2ss |
⊢ ( ( 𝑆 ⊆ ( Base ‘ 𝐺 ) ∧ 𝑇 ⊆ 𝑆 ) → ( 𝑍 ‘ 𝑆 ) ⊆ ( 𝑍 ‘ 𝑇 ) ) |
| 8 |
6 7
|
sylancom |
⊢ ( ( 𝑆 ⊆ ( 𝑍 ‘ 𝑆 ) ∧ 𝑇 ⊆ 𝑆 ) → ( 𝑍 ‘ 𝑆 ) ⊆ ( 𝑍 ‘ 𝑇 ) ) |
| 9 |
3 8
|
sstrd |
⊢ ( ( 𝑆 ⊆ ( 𝑍 ‘ 𝑆 ) ∧ 𝑇 ⊆ 𝑆 ) → 𝑆 ⊆ ( 𝑍 ‘ 𝑇 ) ) |
| 10 |
2 9
|
sstrd |
⊢ ( ( 𝑆 ⊆ ( 𝑍 ‘ 𝑆 ) ∧ 𝑇 ⊆ 𝑆 ) → 𝑇 ⊆ ( 𝑍 ‘ 𝑇 ) ) |