Metamath Proof Explorer


Theorem cntziinsn

Description: Express any centralizer as an intersection of singleton centralizers. (Contributed by Stefan O'Rear, 5-Sep-2015)

Ref Expression
Hypotheses cntzrec.b 𝐵 = ( Base ‘ 𝑀 )
cntzrec.z 𝑍 = ( Cntz ‘ 𝑀 )
Assertion cntziinsn ( 𝑆𝐵 → ( 𝑍𝑆 ) = ( 𝐵 𝑥𝑆 ( 𝑍 ‘ { 𝑥 } ) ) )

Proof

Step Hyp Ref Expression
1 cntzrec.b 𝐵 = ( Base ‘ 𝑀 )
2 cntzrec.z 𝑍 = ( Cntz ‘ 𝑀 )
3 eqid ( +g𝑀 ) = ( +g𝑀 )
4 1 3 2 cntzval ( 𝑆𝐵 → ( 𝑍𝑆 ) = { 𝑦𝐵 ∣ ∀ 𝑥𝑆 ( 𝑦 ( +g𝑀 ) 𝑥 ) = ( 𝑥 ( +g𝑀 ) 𝑦 ) } )
5 ssel2 ( ( 𝑆𝐵𝑥𝑆 ) → 𝑥𝐵 )
6 1 3 2 cntzsnval ( 𝑥𝐵 → ( 𝑍 ‘ { 𝑥 } ) = { 𝑦𝐵 ∣ ( 𝑦 ( +g𝑀 ) 𝑥 ) = ( 𝑥 ( +g𝑀 ) 𝑦 ) } )
7 5 6 syl ( ( 𝑆𝐵𝑥𝑆 ) → ( 𝑍 ‘ { 𝑥 } ) = { 𝑦𝐵 ∣ ( 𝑦 ( +g𝑀 ) 𝑥 ) = ( 𝑥 ( +g𝑀 ) 𝑦 ) } )
8 7 iineq2dv ( 𝑆𝐵 𝑥𝑆 ( 𝑍 ‘ { 𝑥 } ) = 𝑥𝑆 { 𝑦𝐵 ∣ ( 𝑦 ( +g𝑀 ) 𝑥 ) = ( 𝑥 ( +g𝑀 ) 𝑦 ) } )
9 8 ineq2d ( 𝑆𝐵 → ( 𝐵 𝑥𝑆 ( 𝑍 ‘ { 𝑥 } ) ) = ( 𝐵 𝑥𝑆 { 𝑦𝐵 ∣ ( 𝑦 ( +g𝑀 ) 𝑥 ) = ( 𝑥 ( +g𝑀 ) 𝑦 ) } ) )
10 riinrab ( 𝐵 𝑥𝑆 { 𝑦𝐵 ∣ ( 𝑦 ( +g𝑀 ) 𝑥 ) = ( 𝑥 ( +g𝑀 ) 𝑦 ) } ) = { 𝑦𝐵 ∣ ∀ 𝑥𝑆 ( 𝑦 ( +g𝑀 ) 𝑥 ) = ( 𝑥 ( +g𝑀 ) 𝑦 ) }
11 9 10 eqtrdi ( 𝑆𝐵 → ( 𝐵 𝑥𝑆 ( 𝑍 ‘ { 𝑥 } ) ) = { 𝑦𝐵 ∣ ∀ 𝑥𝑆 ( 𝑦 ( +g𝑀 ) 𝑥 ) = ( 𝑥 ( +g𝑀 ) 𝑦 ) } )
12 4 11 eqtr4d ( 𝑆𝐵 → ( 𝑍𝑆 ) = ( 𝐵 𝑥𝑆 ( 𝑍 ‘ { 𝑥 } ) ) )