Step |
Hyp |
Ref |
Expression |
1 |
|
cntzrec.b |
⊢ 𝐵 = ( Base ‘ 𝑀 ) |
2 |
|
cntzrec.z |
⊢ 𝑍 = ( Cntz ‘ 𝑀 ) |
3 |
|
eqid |
⊢ ( +g ‘ 𝑀 ) = ( +g ‘ 𝑀 ) |
4 |
1 3 2
|
cntzval |
⊢ ( 𝑆 ⊆ 𝐵 → ( 𝑍 ‘ 𝑆 ) = { 𝑦 ∈ 𝐵 ∣ ∀ 𝑥 ∈ 𝑆 ( 𝑦 ( +g ‘ 𝑀 ) 𝑥 ) = ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) } ) |
5 |
|
ssel2 |
⊢ ( ( 𝑆 ⊆ 𝐵 ∧ 𝑥 ∈ 𝑆 ) → 𝑥 ∈ 𝐵 ) |
6 |
1 3 2
|
cntzsnval |
⊢ ( 𝑥 ∈ 𝐵 → ( 𝑍 ‘ { 𝑥 } ) = { 𝑦 ∈ 𝐵 ∣ ( 𝑦 ( +g ‘ 𝑀 ) 𝑥 ) = ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) } ) |
7 |
5 6
|
syl |
⊢ ( ( 𝑆 ⊆ 𝐵 ∧ 𝑥 ∈ 𝑆 ) → ( 𝑍 ‘ { 𝑥 } ) = { 𝑦 ∈ 𝐵 ∣ ( 𝑦 ( +g ‘ 𝑀 ) 𝑥 ) = ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) } ) |
8 |
7
|
iineq2dv |
⊢ ( 𝑆 ⊆ 𝐵 → ∩ 𝑥 ∈ 𝑆 ( 𝑍 ‘ { 𝑥 } ) = ∩ 𝑥 ∈ 𝑆 { 𝑦 ∈ 𝐵 ∣ ( 𝑦 ( +g ‘ 𝑀 ) 𝑥 ) = ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) } ) |
9 |
8
|
ineq2d |
⊢ ( 𝑆 ⊆ 𝐵 → ( 𝐵 ∩ ∩ 𝑥 ∈ 𝑆 ( 𝑍 ‘ { 𝑥 } ) ) = ( 𝐵 ∩ ∩ 𝑥 ∈ 𝑆 { 𝑦 ∈ 𝐵 ∣ ( 𝑦 ( +g ‘ 𝑀 ) 𝑥 ) = ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) } ) ) |
10 |
|
riinrab |
⊢ ( 𝐵 ∩ ∩ 𝑥 ∈ 𝑆 { 𝑦 ∈ 𝐵 ∣ ( 𝑦 ( +g ‘ 𝑀 ) 𝑥 ) = ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) } ) = { 𝑦 ∈ 𝐵 ∣ ∀ 𝑥 ∈ 𝑆 ( 𝑦 ( +g ‘ 𝑀 ) 𝑥 ) = ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) } |
11 |
9 10
|
eqtrdi |
⊢ ( 𝑆 ⊆ 𝐵 → ( 𝐵 ∩ ∩ 𝑥 ∈ 𝑆 ( 𝑍 ‘ { 𝑥 } ) ) = { 𝑦 ∈ 𝐵 ∣ ∀ 𝑥 ∈ 𝑆 ( 𝑦 ( +g ‘ 𝑀 ) 𝑥 ) = ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) } ) |
12 |
4 11
|
eqtr4d |
⊢ ( 𝑆 ⊆ 𝐵 → ( 𝑍 ‘ 𝑆 ) = ( 𝐵 ∩ ∩ 𝑥 ∈ 𝑆 ( 𝑍 ‘ { 𝑥 } ) ) ) |