Step |
Hyp |
Ref |
Expression |
1 |
|
cntzmhm.z |
⊢ 𝑍 = ( Cntz ‘ 𝐺 ) |
2 |
|
cntzmhm.y |
⊢ 𝑌 = ( Cntz ‘ 𝐻 ) |
3 |
|
eqid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) |
4 |
|
eqid |
⊢ ( Base ‘ 𝐻 ) = ( Base ‘ 𝐻 ) |
5 |
3 4
|
mhmf |
⊢ ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) → 𝐹 : ( Base ‘ 𝐺 ) ⟶ ( Base ‘ 𝐻 ) ) |
6 |
3 1
|
cntzssv |
⊢ ( 𝑍 ‘ 𝑆 ) ⊆ ( Base ‘ 𝐺 ) |
7 |
6
|
sseli |
⊢ ( 𝐴 ∈ ( 𝑍 ‘ 𝑆 ) → 𝐴 ∈ ( Base ‘ 𝐺 ) ) |
8 |
|
ffvelrn |
⊢ ( ( 𝐹 : ( Base ‘ 𝐺 ) ⟶ ( Base ‘ 𝐻 ) ∧ 𝐴 ∈ ( Base ‘ 𝐺 ) ) → ( 𝐹 ‘ 𝐴 ) ∈ ( Base ‘ 𝐻 ) ) |
9 |
5 7 8
|
syl2an |
⊢ ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝐴 ∈ ( 𝑍 ‘ 𝑆 ) ) → ( 𝐹 ‘ 𝐴 ) ∈ ( Base ‘ 𝐻 ) ) |
10 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
11 |
10 1
|
cntzi |
⊢ ( ( 𝐴 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑥 ∈ 𝑆 ) → ( 𝐴 ( +g ‘ 𝐺 ) 𝑥 ) = ( 𝑥 ( +g ‘ 𝐺 ) 𝐴 ) ) |
12 |
11
|
adantll |
⊢ ( ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝐴 ∈ ( 𝑍 ‘ 𝑆 ) ) ∧ 𝑥 ∈ 𝑆 ) → ( 𝐴 ( +g ‘ 𝐺 ) 𝑥 ) = ( 𝑥 ( +g ‘ 𝐺 ) 𝐴 ) ) |
13 |
12
|
fveq2d |
⊢ ( ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝐴 ∈ ( 𝑍 ‘ 𝑆 ) ) ∧ 𝑥 ∈ 𝑆 ) → ( 𝐹 ‘ ( 𝐴 ( +g ‘ 𝐺 ) 𝑥 ) ) = ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝐺 ) 𝐴 ) ) ) |
14 |
|
simpll |
⊢ ( ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝐴 ∈ ( 𝑍 ‘ 𝑆 ) ) ∧ 𝑥 ∈ 𝑆 ) → 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ) |
15 |
7
|
ad2antlr |
⊢ ( ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝐴 ∈ ( 𝑍 ‘ 𝑆 ) ) ∧ 𝑥 ∈ 𝑆 ) → 𝐴 ∈ ( Base ‘ 𝐺 ) ) |
16 |
3 1
|
cntzrcl |
⊢ ( 𝐴 ∈ ( 𝑍 ‘ 𝑆 ) → ( 𝐺 ∈ V ∧ 𝑆 ⊆ ( Base ‘ 𝐺 ) ) ) |
17 |
16
|
adantl |
⊢ ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝐴 ∈ ( 𝑍 ‘ 𝑆 ) ) → ( 𝐺 ∈ V ∧ 𝑆 ⊆ ( Base ‘ 𝐺 ) ) ) |
18 |
17
|
simprd |
⊢ ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝐴 ∈ ( 𝑍 ‘ 𝑆 ) ) → 𝑆 ⊆ ( Base ‘ 𝐺 ) ) |
19 |
18
|
sselda |
⊢ ( ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝐴 ∈ ( 𝑍 ‘ 𝑆 ) ) ∧ 𝑥 ∈ 𝑆 ) → 𝑥 ∈ ( Base ‘ 𝐺 ) ) |
20 |
|
eqid |
⊢ ( +g ‘ 𝐻 ) = ( +g ‘ 𝐻 ) |
21 |
3 10 20
|
mhmlin |
⊢ ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝐴 ∈ ( Base ‘ 𝐺 ) ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) → ( 𝐹 ‘ ( 𝐴 ( +g ‘ 𝐺 ) 𝑥 ) ) = ( ( 𝐹 ‘ 𝐴 ) ( +g ‘ 𝐻 ) ( 𝐹 ‘ 𝑥 ) ) ) |
22 |
14 15 19 21
|
syl3anc |
⊢ ( ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝐴 ∈ ( 𝑍 ‘ 𝑆 ) ) ∧ 𝑥 ∈ 𝑆 ) → ( 𝐹 ‘ ( 𝐴 ( +g ‘ 𝐺 ) 𝑥 ) ) = ( ( 𝐹 ‘ 𝐴 ) ( +g ‘ 𝐻 ) ( 𝐹 ‘ 𝑥 ) ) ) |
23 |
3 10 20
|
mhmlin |
⊢ ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝐴 ∈ ( Base ‘ 𝐺 ) ) → ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝐺 ) 𝐴 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝐻 ) ( 𝐹 ‘ 𝐴 ) ) ) |
24 |
14 19 15 23
|
syl3anc |
⊢ ( ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝐴 ∈ ( 𝑍 ‘ 𝑆 ) ) ∧ 𝑥 ∈ 𝑆 ) → ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝐺 ) 𝐴 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝐻 ) ( 𝐹 ‘ 𝐴 ) ) ) |
25 |
13 22 24
|
3eqtr3d |
⊢ ( ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝐴 ∈ ( 𝑍 ‘ 𝑆 ) ) ∧ 𝑥 ∈ 𝑆 ) → ( ( 𝐹 ‘ 𝐴 ) ( +g ‘ 𝐻 ) ( 𝐹 ‘ 𝑥 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝐻 ) ( 𝐹 ‘ 𝐴 ) ) ) |
26 |
25
|
ralrimiva |
⊢ ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝐴 ∈ ( 𝑍 ‘ 𝑆 ) ) → ∀ 𝑥 ∈ 𝑆 ( ( 𝐹 ‘ 𝐴 ) ( +g ‘ 𝐻 ) ( 𝐹 ‘ 𝑥 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝐻 ) ( 𝐹 ‘ 𝐴 ) ) ) |
27 |
5
|
adantr |
⊢ ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝐴 ∈ ( 𝑍 ‘ 𝑆 ) ) → 𝐹 : ( Base ‘ 𝐺 ) ⟶ ( Base ‘ 𝐻 ) ) |
28 |
27
|
ffnd |
⊢ ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝐴 ∈ ( 𝑍 ‘ 𝑆 ) ) → 𝐹 Fn ( Base ‘ 𝐺 ) ) |
29 |
|
oveq2 |
⊢ ( 𝑦 = ( 𝐹 ‘ 𝑥 ) → ( ( 𝐹 ‘ 𝐴 ) ( +g ‘ 𝐻 ) 𝑦 ) = ( ( 𝐹 ‘ 𝐴 ) ( +g ‘ 𝐻 ) ( 𝐹 ‘ 𝑥 ) ) ) |
30 |
|
oveq1 |
⊢ ( 𝑦 = ( 𝐹 ‘ 𝑥 ) → ( 𝑦 ( +g ‘ 𝐻 ) ( 𝐹 ‘ 𝐴 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝐻 ) ( 𝐹 ‘ 𝐴 ) ) ) |
31 |
29 30
|
eqeq12d |
⊢ ( 𝑦 = ( 𝐹 ‘ 𝑥 ) → ( ( ( 𝐹 ‘ 𝐴 ) ( +g ‘ 𝐻 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐻 ) ( 𝐹 ‘ 𝐴 ) ) ↔ ( ( 𝐹 ‘ 𝐴 ) ( +g ‘ 𝐻 ) ( 𝐹 ‘ 𝑥 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝐻 ) ( 𝐹 ‘ 𝐴 ) ) ) ) |
32 |
31
|
ralima |
⊢ ( ( 𝐹 Fn ( Base ‘ 𝐺 ) ∧ 𝑆 ⊆ ( Base ‘ 𝐺 ) ) → ( ∀ 𝑦 ∈ ( 𝐹 “ 𝑆 ) ( ( 𝐹 ‘ 𝐴 ) ( +g ‘ 𝐻 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐻 ) ( 𝐹 ‘ 𝐴 ) ) ↔ ∀ 𝑥 ∈ 𝑆 ( ( 𝐹 ‘ 𝐴 ) ( +g ‘ 𝐻 ) ( 𝐹 ‘ 𝑥 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝐻 ) ( 𝐹 ‘ 𝐴 ) ) ) ) |
33 |
28 18 32
|
syl2anc |
⊢ ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝐴 ∈ ( 𝑍 ‘ 𝑆 ) ) → ( ∀ 𝑦 ∈ ( 𝐹 “ 𝑆 ) ( ( 𝐹 ‘ 𝐴 ) ( +g ‘ 𝐻 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐻 ) ( 𝐹 ‘ 𝐴 ) ) ↔ ∀ 𝑥 ∈ 𝑆 ( ( 𝐹 ‘ 𝐴 ) ( +g ‘ 𝐻 ) ( 𝐹 ‘ 𝑥 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝐻 ) ( 𝐹 ‘ 𝐴 ) ) ) ) |
34 |
26 33
|
mpbird |
⊢ ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝐴 ∈ ( 𝑍 ‘ 𝑆 ) ) → ∀ 𝑦 ∈ ( 𝐹 “ 𝑆 ) ( ( 𝐹 ‘ 𝐴 ) ( +g ‘ 𝐻 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐻 ) ( 𝐹 ‘ 𝐴 ) ) ) |
35 |
|
imassrn |
⊢ ( 𝐹 “ 𝑆 ) ⊆ ran 𝐹 |
36 |
27
|
frnd |
⊢ ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝐴 ∈ ( 𝑍 ‘ 𝑆 ) ) → ran 𝐹 ⊆ ( Base ‘ 𝐻 ) ) |
37 |
35 36
|
sstrid |
⊢ ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝐴 ∈ ( 𝑍 ‘ 𝑆 ) ) → ( 𝐹 “ 𝑆 ) ⊆ ( Base ‘ 𝐻 ) ) |
38 |
4 20 2
|
elcntz |
⊢ ( ( 𝐹 “ 𝑆 ) ⊆ ( Base ‘ 𝐻 ) → ( ( 𝐹 ‘ 𝐴 ) ∈ ( 𝑌 ‘ ( 𝐹 “ 𝑆 ) ) ↔ ( ( 𝐹 ‘ 𝐴 ) ∈ ( Base ‘ 𝐻 ) ∧ ∀ 𝑦 ∈ ( 𝐹 “ 𝑆 ) ( ( 𝐹 ‘ 𝐴 ) ( +g ‘ 𝐻 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐻 ) ( 𝐹 ‘ 𝐴 ) ) ) ) ) |
39 |
37 38
|
syl |
⊢ ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝐴 ∈ ( 𝑍 ‘ 𝑆 ) ) → ( ( 𝐹 ‘ 𝐴 ) ∈ ( 𝑌 ‘ ( 𝐹 “ 𝑆 ) ) ↔ ( ( 𝐹 ‘ 𝐴 ) ∈ ( Base ‘ 𝐻 ) ∧ ∀ 𝑦 ∈ ( 𝐹 “ 𝑆 ) ( ( 𝐹 ‘ 𝐴 ) ( +g ‘ 𝐻 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐻 ) ( 𝐹 ‘ 𝐴 ) ) ) ) ) |
40 |
9 34 39
|
mpbir2and |
⊢ ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝐴 ∈ ( 𝑍 ‘ 𝑆 ) ) → ( 𝐹 ‘ 𝐴 ) ∈ ( 𝑌 ‘ ( 𝐹 “ 𝑆 ) ) ) |