| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cntzmhm.z | ⊢ 𝑍  =  ( Cntz ‘ 𝐺 ) | 
						
							| 2 |  | cntzmhm.y | ⊢ 𝑌  =  ( Cntz ‘ 𝐻 ) | 
						
							| 3 |  | eqid | ⊢ ( Base ‘ 𝐺 )  =  ( Base ‘ 𝐺 ) | 
						
							| 4 |  | eqid | ⊢ ( Base ‘ 𝐻 )  =  ( Base ‘ 𝐻 ) | 
						
							| 5 | 3 4 | mhmf | ⊢ ( 𝐹  ∈  ( 𝐺  MndHom  𝐻 )  →  𝐹 : ( Base ‘ 𝐺 ) ⟶ ( Base ‘ 𝐻 ) ) | 
						
							| 6 | 3 1 | cntzssv | ⊢ ( 𝑍 ‘ 𝑆 )  ⊆  ( Base ‘ 𝐺 ) | 
						
							| 7 | 6 | sseli | ⊢ ( 𝐴  ∈  ( 𝑍 ‘ 𝑆 )  →  𝐴  ∈  ( Base ‘ 𝐺 ) ) | 
						
							| 8 |  | ffvelcdm | ⊢ ( ( 𝐹 : ( Base ‘ 𝐺 ) ⟶ ( Base ‘ 𝐻 )  ∧  𝐴  ∈  ( Base ‘ 𝐺 ) )  →  ( 𝐹 ‘ 𝐴 )  ∈  ( Base ‘ 𝐻 ) ) | 
						
							| 9 | 5 7 8 | syl2an | ⊢ ( ( 𝐹  ∈  ( 𝐺  MndHom  𝐻 )  ∧  𝐴  ∈  ( 𝑍 ‘ 𝑆 ) )  →  ( 𝐹 ‘ 𝐴 )  ∈  ( Base ‘ 𝐻 ) ) | 
						
							| 10 |  | eqid | ⊢ ( +g ‘ 𝐺 )  =  ( +g ‘ 𝐺 ) | 
						
							| 11 | 10 1 | cntzi | ⊢ ( ( 𝐴  ∈  ( 𝑍 ‘ 𝑆 )  ∧  𝑥  ∈  𝑆 )  →  ( 𝐴 ( +g ‘ 𝐺 ) 𝑥 )  =  ( 𝑥 ( +g ‘ 𝐺 ) 𝐴 ) ) | 
						
							| 12 | 11 | adantll | ⊢ ( ( ( 𝐹  ∈  ( 𝐺  MndHom  𝐻 )  ∧  𝐴  ∈  ( 𝑍 ‘ 𝑆 ) )  ∧  𝑥  ∈  𝑆 )  →  ( 𝐴 ( +g ‘ 𝐺 ) 𝑥 )  =  ( 𝑥 ( +g ‘ 𝐺 ) 𝐴 ) ) | 
						
							| 13 | 12 | fveq2d | ⊢ ( ( ( 𝐹  ∈  ( 𝐺  MndHom  𝐻 )  ∧  𝐴  ∈  ( 𝑍 ‘ 𝑆 ) )  ∧  𝑥  ∈  𝑆 )  →  ( 𝐹 ‘ ( 𝐴 ( +g ‘ 𝐺 ) 𝑥 ) )  =  ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝐺 ) 𝐴 ) ) ) | 
						
							| 14 |  | simpll | ⊢ ( ( ( 𝐹  ∈  ( 𝐺  MndHom  𝐻 )  ∧  𝐴  ∈  ( 𝑍 ‘ 𝑆 ) )  ∧  𝑥  ∈  𝑆 )  →  𝐹  ∈  ( 𝐺  MndHom  𝐻 ) ) | 
						
							| 15 | 7 | ad2antlr | ⊢ ( ( ( 𝐹  ∈  ( 𝐺  MndHom  𝐻 )  ∧  𝐴  ∈  ( 𝑍 ‘ 𝑆 ) )  ∧  𝑥  ∈  𝑆 )  →  𝐴  ∈  ( Base ‘ 𝐺 ) ) | 
						
							| 16 | 3 1 | cntzrcl | ⊢ ( 𝐴  ∈  ( 𝑍 ‘ 𝑆 )  →  ( 𝐺  ∈  V  ∧  𝑆  ⊆  ( Base ‘ 𝐺 ) ) ) | 
						
							| 17 | 16 | adantl | ⊢ ( ( 𝐹  ∈  ( 𝐺  MndHom  𝐻 )  ∧  𝐴  ∈  ( 𝑍 ‘ 𝑆 ) )  →  ( 𝐺  ∈  V  ∧  𝑆  ⊆  ( Base ‘ 𝐺 ) ) ) | 
						
							| 18 | 17 | simprd | ⊢ ( ( 𝐹  ∈  ( 𝐺  MndHom  𝐻 )  ∧  𝐴  ∈  ( 𝑍 ‘ 𝑆 ) )  →  𝑆  ⊆  ( Base ‘ 𝐺 ) ) | 
						
							| 19 | 18 | sselda | ⊢ ( ( ( 𝐹  ∈  ( 𝐺  MndHom  𝐻 )  ∧  𝐴  ∈  ( 𝑍 ‘ 𝑆 ) )  ∧  𝑥  ∈  𝑆 )  →  𝑥  ∈  ( Base ‘ 𝐺 ) ) | 
						
							| 20 |  | eqid | ⊢ ( +g ‘ 𝐻 )  =  ( +g ‘ 𝐻 ) | 
						
							| 21 | 3 10 20 | mhmlin | ⊢ ( ( 𝐹  ∈  ( 𝐺  MndHom  𝐻 )  ∧  𝐴  ∈  ( Base ‘ 𝐺 )  ∧  𝑥  ∈  ( Base ‘ 𝐺 ) )  →  ( 𝐹 ‘ ( 𝐴 ( +g ‘ 𝐺 ) 𝑥 ) )  =  ( ( 𝐹 ‘ 𝐴 ) ( +g ‘ 𝐻 ) ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 22 | 14 15 19 21 | syl3anc | ⊢ ( ( ( 𝐹  ∈  ( 𝐺  MndHom  𝐻 )  ∧  𝐴  ∈  ( 𝑍 ‘ 𝑆 ) )  ∧  𝑥  ∈  𝑆 )  →  ( 𝐹 ‘ ( 𝐴 ( +g ‘ 𝐺 ) 𝑥 ) )  =  ( ( 𝐹 ‘ 𝐴 ) ( +g ‘ 𝐻 ) ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 23 | 3 10 20 | mhmlin | ⊢ ( ( 𝐹  ∈  ( 𝐺  MndHom  𝐻 )  ∧  𝑥  ∈  ( Base ‘ 𝐺 )  ∧  𝐴  ∈  ( Base ‘ 𝐺 ) )  →  ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝐺 ) 𝐴 ) )  =  ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝐻 ) ( 𝐹 ‘ 𝐴 ) ) ) | 
						
							| 24 | 14 19 15 23 | syl3anc | ⊢ ( ( ( 𝐹  ∈  ( 𝐺  MndHom  𝐻 )  ∧  𝐴  ∈  ( 𝑍 ‘ 𝑆 ) )  ∧  𝑥  ∈  𝑆 )  →  ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝐺 ) 𝐴 ) )  =  ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝐻 ) ( 𝐹 ‘ 𝐴 ) ) ) | 
						
							| 25 | 13 22 24 | 3eqtr3d | ⊢ ( ( ( 𝐹  ∈  ( 𝐺  MndHom  𝐻 )  ∧  𝐴  ∈  ( 𝑍 ‘ 𝑆 ) )  ∧  𝑥  ∈  𝑆 )  →  ( ( 𝐹 ‘ 𝐴 ) ( +g ‘ 𝐻 ) ( 𝐹 ‘ 𝑥 ) )  =  ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝐻 ) ( 𝐹 ‘ 𝐴 ) ) ) | 
						
							| 26 | 25 | ralrimiva | ⊢ ( ( 𝐹  ∈  ( 𝐺  MndHom  𝐻 )  ∧  𝐴  ∈  ( 𝑍 ‘ 𝑆 ) )  →  ∀ 𝑥  ∈  𝑆 ( ( 𝐹 ‘ 𝐴 ) ( +g ‘ 𝐻 ) ( 𝐹 ‘ 𝑥 ) )  =  ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝐻 ) ( 𝐹 ‘ 𝐴 ) ) ) | 
						
							| 27 | 5 | adantr | ⊢ ( ( 𝐹  ∈  ( 𝐺  MndHom  𝐻 )  ∧  𝐴  ∈  ( 𝑍 ‘ 𝑆 ) )  →  𝐹 : ( Base ‘ 𝐺 ) ⟶ ( Base ‘ 𝐻 ) ) | 
						
							| 28 | 27 | ffnd | ⊢ ( ( 𝐹  ∈  ( 𝐺  MndHom  𝐻 )  ∧  𝐴  ∈  ( 𝑍 ‘ 𝑆 ) )  →  𝐹  Fn  ( Base ‘ 𝐺 ) ) | 
						
							| 29 |  | oveq2 | ⊢ ( 𝑦  =  ( 𝐹 ‘ 𝑥 )  →  ( ( 𝐹 ‘ 𝐴 ) ( +g ‘ 𝐻 ) 𝑦 )  =  ( ( 𝐹 ‘ 𝐴 ) ( +g ‘ 𝐻 ) ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 30 |  | oveq1 | ⊢ ( 𝑦  =  ( 𝐹 ‘ 𝑥 )  →  ( 𝑦 ( +g ‘ 𝐻 ) ( 𝐹 ‘ 𝐴 ) )  =  ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝐻 ) ( 𝐹 ‘ 𝐴 ) ) ) | 
						
							| 31 | 29 30 | eqeq12d | ⊢ ( 𝑦  =  ( 𝐹 ‘ 𝑥 )  →  ( ( ( 𝐹 ‘ 𝐴 ) ( +g ‘ 𝐻 ) 𝑦 )  =  ( 𝑦 ( +g ‘ 𝐻 ) ( 𝐹 ‘ 𝐴 ) )  ↔  ( ( 𝐹 ‘ 𝐴 ) ( +g ‘ 𝐻 ) ( 𝐹 ‘ 𝑥 ) )  =  ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝐻 ) ( 𝐹 ‘ 𝐴 ) ) ) ) | 
						
							| 32 | 31 | ralima | ⊢ ( ( 𝐹  Fn  ( Base ‘ 𝐺 )  ∧  𝑆  ⊆  ( Base ‘ 𝐺 ) )  →  ( ∀ 𝑦  ∈  ( 𝐹  “  𝑆 ) ( ( 𝐹 ‘ 𝐴 ) ( +g ‘ 𝐻 ) 𝑦 )  =  ( 𝑦 ( +g ‘ 𝐻 ) ( 𝐹 ‘ 𝐴 ) )  ↔  ∀ 𝑥  ∈  𝑆 ( ( 𝐹 ‘ 𝐴 ) ( +g ‘ 𝐻 ) ( 𝐹 ‘ 𝑥 ) )  =  ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝐻 ) ( 𝐹 ‘ 𝐴 ) ) ) ) | 
						
							| 33 | 28 18 32 | syl2anc | ⊢ ( ( 𝐹  ∈  ( 𝐺  MndHom  𝐻 )  ∧  𝐴  ∈  ( 𝑍 ‘ 𝑆 ) )  →  ( ∀ 𝑦  ∈  ( 𝐹  “  𝑆 ) ( ( 𝐹 ‘ 𝐴 ) ( +g ‘ 𝐻 ) 𝑦 )  =  ( 𝑦 ( +g ‘ 𝐻 ) ( 𝐹 ‘ 𝐴 ) )  ↔  ∀ 𝑥  ∈  𝑆 ( ( 𝐹 ‘ 𝐴 ) ( +g ‘ 𝐻 ) ( 𝐹 ‘ 𝑥 ) )  =  ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝐻 ) ( 𝐹 ‘ 𝐴 ) ) ) ) | 
						
							| 34 | 26 33 | mpbird | ⊢ ( ( 𝐹  ∈  ( 𝐺  MndHom  𝐻 )  ∧  𝐴  ∈  ( 𝑍 ‘ 𝑆 ) )  →  ∀ 𝑦  ∈  ( 𝐹  “  𝑆 ) ( ( 𝐹 ‘ 𝐴 ) ( +g ‘ 𝐻 ) 𝑦 )  =  ( 𝑦 ( +g ‘ 𝐻 ) ( 𝐹 ‘ 𝐴 ) ) ) | 
						
							| 35 |  | imassrn | ⊢ ( 𝐹  “  𝑆 )  ⊆  ran  𝐹 | 
						
							| 36 | 27 | frnd | ⊢ ( ( 𝐹  ∈  ( 𝐺  MndHom  𝐻 )  ∧  𝐴  ∈  ( 𝑍 ‘ 𝑆 ) )  →  ran  𝐹  ⊆  ( Base ‘ 𝐻 ) ) | 
						
							| 37 | 35 36 | sstrid | ⊢ ( ( 𝐹  ∈  ( 𝐺  MndHom  𝐻 )  ∧  𝐴  ∈  ( 𝑍 ‘ 𝑆 ) )  →  ( 𝐹  “  𝑆 )  ⊆  ( Base ‘ 𝐻 ) ) | 
						
							| 38 | 4 20 2 | elcntz | ⊢ ( ( 𝐹  “  𝑆 )  ⊆  ( Base ‘ 𝐻 )  →  ( ( 𝐹 ‘ 𝐴 )  ∈  ( 𝑌 ‘ ( 𝐹  “  𝑆 ) )  ↔  ( ( 𝐹 ‘ 𝐴 )  ∈  ( Base ‘ 𝐻 )  ∧  ∀ 𝑦  ∈  ( 𝐹  “  𝑆 ) ( ( 𝐹 ‘ 𝐴 ) ( +g ‘ 𝐻 ) 𝑦 )  =  ( 𝑦 ( +g ‘ 𝐻 ) ( 𝐹 ‘ 𝐴 ) ) ) ) ) | 
						
							| 39 | 37 38 | syl | ⊢ ( ( 𝐹  ∈  ( 𝐺  MndHom  𝐻 )  ∧  𝐴  ∈  ( 𝑍 ‘ 𝑆 ) )  →  ( ( 𝐹 ‘ 𝐴 )  ∈  ( 𝑌 ‘ ( 𝐹  “  𝑆 ) )  ↔  ( ( 𝐹 ‘ 𝐴 )  ∈  ( Base ‘ 𝐻 )  ∧  ∀ 𝑦  ∈  ( 𝐹  “  𝑆 ) ( ( 𝐹 ‘ 𝐴 ) ( +g ‘ 𝐻 ) 𝑦 )  =  ( 𝑦 ( +g ‘ 𝐻 ) ( 𝐹 ‘ 𝐴 ) ) ) ) ) | 
						
							| 40 | 9 34 39 | mpbir2and | ⊢ ( ( 𝐹  ∈  ( 𝐺  MndHom  𝐻 )  ∧  𝐴  ∈  ( 𝑍 ‘ 𝑆 ) )  →  ( 𝐹 ‘ 𝐴 )  ∈  ( 𝑌 ‘ ( 𝐹  “  𝑆 ) ) ) |