Metamath Proof Explorer


Theorem cntzmhm2

Description: Centralizers in a monoid are preserved by monoid homomorphisms. (Contributed by Mario Carneiro, 24-Apr-2016)

Ref Expression
Hypotheses cntzmhm.z 𝑍 = ( Cntz ‘ 𝐺 )
cntzmhm.y 𝑌 = ( Cntz ‘ 𝐻 )
Assertion cntzmhm2 ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝑆 ⊆ ( 𝑍𝑇 ) ) → ( 𝐹𝑆 ) ⊆ ( 𝑌 ‘ ( 𝐹𝑇 ) ) )

Proof

Step Hyp Ref Expression
1 cntzmhm.z 𝑍 = ( Cntz ‘ 𝐺 )
2 cntzmhm.y 𝑌 = ( Cntz ‘ 𝐻 )
3 1 2 cntzmhm ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝑥 ∈ ( 𝑍𝑇 ) ) → ( 𝐹𝑥 ) ∈ ( 𝑌 ‘ ( 𝐹𝑇 ) ) )
4 3 ralrimiva ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) → ∀ 𝑥 ∈ ( 𝑍𝑇 ) ( 𝐹𝑥 ) ∈ ( 𝑌 ‘ ( 𝐹𝑇 ) ) )
5 ssralv ( 𝑆 ⊆ ( 𝑍𝑇 ) → ( ∀ 𝑥 ∈ ( 𝑍𝑇 ) ( 𝐹𝑥 ) ∈ ( 𝑌 ‘ ( 𝐹𝑇 ) ) → ∀ 𝑥𝑆 ( 𝐹𝑥 ) ∈ ( 𝑌 ‘ ( 𝐹𝑇 ) ) ) )
6 4 5 mpan9 ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝑆 ⊆ ( 𝑍𝑇 ) ) → ∀ 𝑥𝑆 ( 𝐹𝑥 ) ∈ ( 𝑌 ‘ ( 𝐹𝑇 ) ) )
7 eqid ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 )
8 eqid ( Base ‘ 𝐻 ) = ( Base ‘ 𝐻 )
9 7 8 mhmf ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) → 𝐹 : ( Base ‘ 𝐺 ) ⟶ ( Base ‘ 𝐻 ) )
10 9 adantr ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝑆 ⊆ ( 𝑍𝑇 ) ) → 𝐹 : ( Base ‘ 𝐺 ) ⟶ ( Base ‘ 𝐻 ) )
11 10 ffund ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝑆 ⊆ ( 𝑍𝑇 ) ) → Fun 𝐹 )
12 simpr ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝑆 ⊆ ( 𝑍𝑇 ) ) → 𝑆 ⊆ ( 𝑍𝑇 ) )
13 7 1 cntzssv ( 𝑍𝑇 ) ⊆ ( Base ‘ 𝐺 )
14 12 13 sstrdi ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝑆 ⊆ ( 𝑍𝑇 ) ) → 𝑆 ⊆ ( Base ‘ 𝐺 ) )
15 10 fdmd ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝑆 ⊆ ( 𝑍𝑇 ) ) → dom 𝐹 = ( Base ‘ 𝐺 ) )
16 14 15 sseqtrrd ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝑆 ⊆ ( 𝑍𝑇 ) ) → 𝑆 ⊆ dom 𝐹 )
17 funimass4 ( ( Fun 𝐹𝑆 ⊆ dom 𝐹 ) → ( ( 𝐹𝑆 ) ⊆ ( 𝑌 ‘ ( 𝐹𝑇 ) ) ↔ ∀ 𝑥𝑆 ( 𝐹𝑥 ) ∈ ( 𝑌 ‘ ( 𝐹𝑇 ) ) ) )
18 11 16 17 syl2anc ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝑆 ⊆ ( 𝑍𝑇 ) ) → ( ( 𝐹𝑆 ) ⊆ ( 𝑌 ‘ ( 𝐹𝑇 ) ) ↔ ∀ 𝑥𝑆 ( 𝐹𝑥 ) ∈ ( 𝑌 ‘ ( 𝐹𝑇 ) ) ) )
19 6 18 mpbird ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝑆 ⊆ ( 𝑍𝑇 ) ) → ( 𝐹𝑆 ) ⊆ ( 𝑌 ‘ ( 𝐹𝑇 ) ) )