Step |
Hyp |
Ref |
Expression |
1 |
|
cntzmhm.z |
⊢ 𝑍 = ( Cntz ‘ 𝐺 ) |
2 |
|
cntzmhm.y |
⊢ 𝑌 = ( Cntz ‘ 𝐻 ) |
3 |
1 2
|
cntzmhm |
⊢ ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑇 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ( 𝑌 ‘ ( 𝐹 “ 𝑇 ) ) ) |
4 |
3
|
ralrimiva |
⊢ ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) → ∀ 𝑥 ∈ ( 𝑍 ‘ 𝑇 ) ( 𝐹 ‘ 𝑥 ) ∈ ( 𝑌 ‘ ( 𝐹 “ 𝑇 ) ) ) |
5 |
|
ssralv |
⊢ ( 𝑆 ⊆ ( 𝑍 ‘ 𝑇 ) → ( ∀ 𝑥 ∈ ( 𝑍 ‘ 𝑇 ) ( 𝐹 ‘ 𝑥 ) ∈ ( 𝑌 ‘ ( 𝐹 “ 𝑇 ) ) → ∀ 𝑥 ∈ 𝑆 ( 𝐹 ‘ 𝑥 ) ∈ ( 𝑌 ‘ ( 𝐹 “ 𝑇 ) ) ) ) |
6 |
4 5
|
mpan9 |
⊢ ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝑆 ⊆ ( 𝑍 ‘ 𝑇 ) ) → ∀ 𝑥 ∈ 𝑆 ( 𝐹 ‘ 𝑥 ) ∈ ( 𝑌 ‘ ( 𝐹 “ 𝑇 ) ) ) |
7 |
|
eqid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) |
8 |
|
eqid |
⊢ ( Base ‘ 𝐻 ) = ( Base ‘ 𝐻 ) |
9 |
7 8
|
mhmf |
⊢ ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) → 𝐹 : ( Base ‘ 𝐺 ) ⟶ ( Base ‘ 𝐻 ) ) |
10 |
9
|
adantr |
⊢ ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝑆 ⊆ ( 𝑍 ‘ 𝑇 ) ) → 𝐹 : ( Base ‘ 𝐺 ) ⟶ ( Base ‘ 𝐻 ) ) |
11 |
10
|
ffund |
⊢ ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝑆 ⊆ ( 𝑍 ‘ 𝑇 ) ) → Fun 𝐹 ) |
12 |
|
simpr |
⊢ ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝑆 ⊆ ( 𝑍 ‘ 𝑇 ) ) → 𝑆 ⊆ ( 𝑍 ‘ 𝑇 ) ) |
13 |
7 1
|
cntzssv |
⊢ ( 𝑍 ‘ 𝑇 ) ⊆ ( Base ‘ 𝐺 ) |
14 |
12 13
|
sstrdi |
⊢ ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝑆 ⊆ ( 𝑍 ‘ 𝑇 ) ) → 𝑆 ⊆ ( Base ‘ 𝐺 ) ) |
15 |
10
|
fdmd |
⊢ ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝑆 ⊆ ( 𝑍 ‘ 𝑇 ) ) → dom 𝐹 = ( Base ‘ 𝐺 ) ) |
16 |
14 15
|
sseqtrrd |
⊢ ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝑆 ⊆ ( 𝑍 ‘ 𝑇 ) ) → 𝑆 ⊆ dom 𝐹 ) |
17 |
|
funimass4 |
⊢ ( ( Fun 𝐹 ∧ 𝑆 ⊆ dom 𝐹 ) → ( ( 𝐹 “ 𝑆 ) ⊆ ( 𝑌 ‘ ( 𝐹 “ 𝑇 ) ) ↔ ∀ 𝑥 ∈ 𝑆 ( 𝐹 ‘ 𝑥 ) ∈ ( 𝑌 ‘ ( 𝐹 “ 𝑇 ) ) ) ) |
18 |
11 16 17
|
syl2anc |
⊢ ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝑆 ⊆ ( 𝑍 ‘ 𝑇 ) ) → ( ( 𝐹 “ 𝑆 ) ⊆ ( 𝑌 ‘ ( 𝐹 “ 𝑇 ) ) ↔ ∀ 𝑥 ∈ 𝑆 ( 𝐹 ‘ 𝑥 ) ∈ ( 𝑌 ‘ ( 𝐹 “ 𝑇 ) ) ) ) |
19 |
6 18
|
mpbird |
⊢ ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝑆 ⊆ ( 𝑍 ‘ 𝑇 ) ) → ( 𝐹 “ 𝑆 ) ⊆ ( 𝑌 ‘ ( 𝐹 “ 𝑇 ) ) ) |