| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cntzmhm.z | ⊢ 𝑍  =  ( Cntz ‘ 𝐺 ) | 
						
							| 2 |  | cntzmhm.y | ⊢ 𝑌  =  ( Cntz ‘ 𝐻 ) | 
						
							| 3 | 1 2 | cntzmhm | ⊢ ( ( 𝐹  ∈  ( 𝐺  MndHom  𝐻 )  ∧  𝑥  ∈  ( 𝑍 ‘ 𝑇 ) )  →  ( 𝐹 ‘ 𝑥 )  ∈  ( 𝑌 ‘ ( 𝐹  “  𝑇 ) ) ) | 
						
							| 4 | 3 | ralrimiva | ⊢ ( 𝐹  ∈  ( 𝐺  MndHom  𝐻 )  →  ∀ 𝑥  ∈  ( 𝑍 ‘ 𝑇 ) ( 𝐹 ‘ 𝑥 )  ∈  ( 𝑌 ‘ ( 𝐹  “  𝑇 ) ) ) | 
						
							| 5 |  | ssralv | ⊢ ( 𝑆  ⊆  ( 𝑍 ‘ 𝑇 )  →  ( ∀ 𝑥  ∈  ( 𝑍 ‘ 𝑇 ) ( 𝐹 ‘ 𝑥 )  ∈  ( 𝑌 ‘ ( 𝐹  “  𝑇 ) )  →  ∀ 𝑥  ∈  𝑆 ( 𝐹 ‘ 𝑥 )  ∈  ( 𝑌 ‘ ( 𝐹  “  𝑇 ) ) ) ) | 
						
							| 6 | 4 5 | mpan9 | ⊢ ( ( 𝐹  ∈  ( 𝐺  MndHom  𝐻 )  ∧  𝑆  ⊆  ( 𝑍 ‘ 𝑇 ) )  →  ∀ 𝑥  ∈  𝑆 ( 𝐹 ‘ 𝑥 )  ∈  ( 𝑌 ‘ ( 𝐹  “  𝑇 ) ) ) | 
						
							| 7 |  | eqid | ⊢ ( Base ‘ 𝐺 )  =  ( Base ‘ 𝐺 ) | 
						
							| 8 |  | eqid | ⊢ ( Base ‘ 𝐻 )  =  ( Base ‘ 𝐻 ) | 
						
							| 9 | 7 8 | mhmf | ⊢ ( 𝐹  ∈  ( 𝐺  MndHom  𝐻 )  →  𝐹 : ( Base ‘ 𝐺 ) ⟶ ( Base ‘ 𝐻 ) ) | 
						
							| 10 | 9 | adantr | ⊢ ( ( 𝐹  ∈  ( 𝐺  MndHom  𝐻 )  ∧  𝑆  ⊆  ( 𝑍 ‘ 𝑇 ) )  →  𝐹 : ( Base ‘ 𝐺 ) ⟶ ( Base ‘ 𝐻 ) ) | 
						
							| 11 | 10 | ffund | ⊢ ( ( 𝐹  ∈  ( 𝐺  MndHom  𝐻 )  ∧  𝑆  ⊆  ( 𝑍 ‘ 𝑇 ) )  →  Fun  𝐹 ) | 
						
							| 12 |  | simpr | ⊢ ( ( 𝐹  ∈  ( 𝐺  MndHom  𝐻 )  ∧  𝑆  ⊆  ( 𝑍 ‘ 𝑇 ) )  →  𝑆  ⊆  ( 𝑍 ‘ 𝑇 ) ) | 
						
							| 13 | 7 1 | cntzssv | ⊢ ( 𝑍 ‘ 𝑇 )  ⊆  ( Base ‘ 𝐺 ) | 
						
							| 14 | 12 13 | sstrdi | ⊢ ( ( 𝐹  ∈  ( 𝐺  MndHom  𝐻 )  ∧  𝑆  ⊆  ( 𝑍 ‘ 𝑇 ) )  →  𝑆  ⊆  ( Base ‘ 𝐺 ) ) | 
						
							| 15 | 10 | fdmd | ⊢ ( ( 𝐹  ∈  ( 𝐺  MndHom  𝐻 )  ∧  𝑆  ⊆  ( 𝑍 ‘ 𝑇 ) )  →  dom  𝐹  =  ( Base ‘ 𝐺 ) ) | 
						
							| 16 | 14 15 | sseqtrrd | ⊢ ( ( 𝐹  ∈  ( 𝐺  MndHom  𝐻 )  ∧  𝑆  ⊆  ( 𝑍 ‘ 𝑇 ) )  →  𝑆  ⊆  dom  𝐹 ) | 
						
							| 17 |  | funimass4 | ⊢ ( ( Fun  𝐹  ∧  𝑆  ⊆  dom  𝐹 )  →  ( ( 𝐹  “  𝑆 )  ⊆  ( 𝑌 ‘ ( 𝐹  “  𝑇 ) )  ↔  ∀ 𝑥  ∈  𝑆 ( 𝐹 ‘ 𝑥 )  ∈  ( 𝑌 ‘ ( 𝐹  “  𝑇 ) ) ) ) | 
						
							| 18 | 11 16 17 | syl2anc | ⊢ ( ( 𝐹  ∈  ( 𝐺  MndHom  𝐻 )  ∧  𝑆  ⊆  ( 𝑍 ‘ 𝑇 ) )  →  ( ( 𝐹  “  𝑆 )  ⊆  ( 𝑌 ‘ ( 𝐹  “  𝑇 ) )  ↔  ∀ 𝑥  ∈  𝑆 ( 𝐹 ‘ 𝑥 )  ∈  ( 𝑌 ‘ ( 𝐹  “  𝑇 ) ) ) ) | 
						
							| 19 | 6 18 | mpbird | ⊢ ( ( 𝐹  ∈  ( 𝐺  MndHom  𝐻 )  ∧  𝑆  ⊆  ( 𝑍 ‘ 𝑇 ) )  →  ( 𝐹  “  𝑆 )  ⊆  ( 𝑌 ‘ ( 𝐹  “  𝑇 ) ) ) |