Step |
Hyp |
Ref |
Expression |
1 |
|
cntzrcl.b |
⊢ 𝐵 = ( Base ‘ 𝑀 ) |
2 |
|
cntzrcl.z |
⊢ 𝑍 = ( Cntz ‘ 𝑀 ) |
3 |
|
noel |
⊢ ¬ 𝑋 ∈ ∅ |
4 |
|
fvprc |
⊢ ( ¬ 𝑀 ∈ V → ( Cntz ‘ 𝑀 ) = ∅ ) |
5 |
2 4
|
eqtrid |
⊢ ( ¬ 𝑀 ∈ V → 𝑍 = ∅ ) |
6 |
5
|
fveq1d |
⊢ ( ¬ 𝑀 ∈ V → ( 𝑍 ‘ 𝑆 ) = ( ∅ ‘ 𝑆 ) ) |
7 |
|
0fv |
⊢ ( ∅ ‘ 𝑆 ) = ∅ |
8 |
6 7
|
eqtrdi |
⊢ ( ¬ 𝑀 ∈ V → ( 𝑍 ‘ 𝑆 ) = ∅ ) |
9 |
8
|
eleq2d |
⊢ ( ¬ 𝑀 ∈ V → ( 𝑋 ∈ ( 𝑍 ‘ 𝑆 ) ↔ 𝑋 ∈ ∅ ) ) |
10 |
3 9
|
mtbiri |
⊢ ( ¬ 𝑀 ∈ V → ¬ 𝑋 ∈ ( 𝑍 ‘ 𝑆 ) ) |
11 |
10
|
con4i |
⊢ ( 𝑋 ∈ ( 𝑍 ‘ 𝑆 ) → 𝑀 ∈ V ) |
12 |
|
eqid |
⊢ ( +g ‘ 𝑀 ) = ( +g ‘ 𝑀 ) |
13 |
1 12 2
|
cntzfval |
⊢ ( 𝑀 ∈ V → 𝑍 = ( 𝑥 ∈ 𝒫 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ∀ 𝑧 ∈ 𝑥 ( 𝑦 ( +g ‘ 𝑀 ) 𝑧 ) = ( 𝑧 ( +g ‘ 𝑀 ) 𝑦 ) } ) ) |
14 |
11 13
|
syl |
⊢ ( 𝑋 ∈ ( 𝑍 ‘ 𝑆 ) → 𝑍 = ( 𝑥 ∈ 𝒫 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ∀ 𝑧 ∈ 𝑥 ( 𝑦 ( +g ‘ 𝑀 ) 𝑧 ) = ( 𝑧 ( +g ‘ 𝑀 ) 𝑦 ) } ) ) |
15 |
14
|
dmeqd |
⊢ ( 𝑋 ∈ ( 𝑍 ‘ 𝑆 ) → dom 𝑍 = dom ( 𝑥 ∈ 𝒫 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ∀ 𝑧 ∈ 𝑥 ( 𝑦 ( +g ‘ 𝑀 ) 𝑧 ) = ( 𝑧 ( +g ‘ 𝑀 ) 𝑦 ) } ) ) |
16 |
|
eqid |
⊢ ( 𝑥 ∈ 𝒫 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ∀ 𝑧 ∈ 𝑥 ( 𝑦 ( +g ‘ 𝑀 ) 𝑧 ) = ( 𝑧 ( +g ‘ 𝑀 ) 𝑦 ) } ) = ( 𝑥 ∈ 𝒫 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ∀ 𝑧 ∈ 𝑥 ( 𝑦 ( +g ‘ 𝑀 ) 𝑧 ) = ( 𝑧 ( +g ‘ 𝑀 ) 𝑦 ) } ) |
17 |
16
|
dmmptss |
⊢ dom ( 𝑥 ∈ 𝒫 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ∀ 𝑧 ∈ 𝑥 ( 𝑦 ( +g ‘ 𝑀 ) 𝑧 ) = ( 𝑧 ( +g ‘ 𝑀 ) 𝑦 ) } ) ⊆ 𝒫 𝐵 |
18 |
15 17
|
eqsstrdi |
⊢ ( 𝑋 ∈ ( 𝑍 ‘ 𝑆 ) → dom 𝑍 ⊆ 𝒫 𝐵 ) |
19 |
|
elfvdm |
⊢ ( 𝑋 ∈ ( 𝑍 ‘ 𝑆 ) → 𝑆 ∈ dom 𝑍 ) |
20 |
18 19
|
sseldd |
⊢ ( 𝑋 ∈ ( 𝑍 ‘ 𝑆 ) → 𝑆 ∈ 𝒫 𝐵 ) |
21 |
20
|
elpwid |
⊢ ( 𝑋 ∈ ( 𝑍 ‘ 𝑆 ) → 𝑆 ⊆ 𝐵 ) |
22 |
11 21
|
jca |
⊢ ( 𝑋 ∈ ( 𝑍 ‘ 𝑆 ) → ( 𝑀 ∈ V ∧ 𝑆 ⊆ 𝐵 ) ) |