Metamath Proof Explorer


Theorem cntzrec

Description: Reciprocity relationship for centralizers. (Contributed by Stefan O'Rear, 5-Sep-2015)

Ref Expression
Hypotheses cntzrec.b 𝐵 = ( Base ‘ 𝑀 )
cntzrec.z 𝑍 = ( Cntz ‘ 𝑀 )
Assertion cntzrec ( ( 𝑆𝐵𝑇𝐵 ) → ( 𝑆 ⊆ ( 𝑍𝑇 ) ↔ 𝑇 ⊆ ( 𝑍𝑆 ) ) )

Proof

Step Hyp Ref Expression
1 cntzrec.b 𝐵 = ( Base ‘ 𝑀 )
2 cntzrec.z 𝑍 = ( Cntz ‘ 𝑀 )
3 ralcom ( ∀ 𝑥𝑆𝑦𝑇 ( 𝑥 ( +g𝑀 ) 𝑦 ) = ( 𝑦 ( +g𝑀 ) 𝑥 ) ↔ ∀ 𝑦𝑇𝑥𝑆 ( 𝑥 ( +g𝑀 ) 𝑦 ) = ( 𝑦 ( +g𝑀 ) 𝑥 ) )
4 eqcom ( ( 𝑥 ( +g𝑀 ) 𝑦 ) = ( 𝑦 ( +g𝑀 ) 𝑥 ) ↔ ( 𝑦 ( +g𝑀 ) 𝑥 ) = ( 𝑥 ( +g𝑀 ) 𝑦 ) )
5 4 2ralbii ( ∀ 𝑦𝑇𝑥𝑆 ( 𝑥 ( +g𝑀 ) 𝑦 ) = ( 𝑦 ( +g𝑀 ) 𝑥 ) ↔ ∀ 𝑦𝑇𝑥𝑆 ( 𝑦 ( +g𝑀 ) 𝑥 ) = ( 𝑥 ( +g𝑀 ) 𝑦 ) )
6 3 5 bitri ( ∀ 𝑥𝑆𝑦𝑇 ( 𝑥 ( +g𝑀 ) 𝑦 ) = ( 𝑦 ( +g𝑀 ) 𝑥 ) ↔ ∀ 𝑦𝑇𝑥𝑆 ( 𝑦 ( +g𝑀 ) 𝑥 ) = ( 𝑥 ( +g𝑀 ) 𝑦 ) )
7 6 a1i ( ( 𝑆𝐵𝑇𝐵 ) → ( ∀ 𝑥𝑆𝑦𝑇 ( 𝑥 ( +g𝑀 ) 𝑦 ) = ( 𝑦 ( +g𝑀 ) 𝑥 ) ↔ ∀ 𝑦𝑇𝑥𝑆 ( 𝑦 ( +g𝑀 ) 𝑥 ) = ( 𝑥 ( +g𝑀 ) 𝑦 ) ) )
8 eqid ( +g𝑀 ) = ( +g𝑀 )
9 1 8 2 sscntz ( ( 𝑆𝐵𝑇𝐵 ) → ( 𝑆 ⊆ ( 𝑍𝑇 ) ↔ ∀ 𝑥𝑆𝑦𝑇 ( 𝑥 ( +g𝑀 ) 𝑦 ) = ( 𝑦 ( +g𝑀 ) 𝑥 ) ) )
10 1 8 2 sscntz ( ( 𝑇𝐵𝑆𝐵 ) → ( 𝑇 ⊆ ( 𝑍𝑆 ) ↔ ∀ 𝑦𝑇𝑥𝑆 ( 𝑦 ( +g𝑀 ) 𝑥 ) = ( 𝑥 ( +g𝑀 ) 𝑦 ) ) )
11 10 ancoms ( ( 𝑆𝐵𝑇𝐵 ) → ( 𝑇 ⊆ ( 𝑍𝑆 ) ↔ ∀ 𝑦𝑇𝑥𝑆 ( 𝑦 ( +g𝑀 ) 𝑥 ) = ( 𝑥 ( +g𝑀 ) 𝑦 ) ) )
12 7 9 11 3bitr4d ( ( 𝑆𝐵𝑇𝐵 ) → ( 𝑆 ⊆ ( 𝑍𝑇 ) ↔ 𝑇 ⊆ ( 𝑍𝑆 ) ) )