Step |
Hyp |
Ref |
Expression |
1 |
|
cntzrec.b |
⊢ 𝐵 = ( Base ‘ 𝑀 ) |
2 |
|
cntzrec.z |
⊢ 𝑍 = ( Cntz ‘ 𝑀 ) |
3 |
|
ralcom |
⊢ ( ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑇 ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑀 ) 𝑥 ) ↔ ∀ 𝑦 ∈ 𝑇 ∀ 𝑥 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑀 ) 𝑥 ) ) |
4 |
|
eqcom |
⊢ ( ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑀 ) 𝑥 ) ↔ ( 𝑦 ( +g ‘ 𝑀 ) 𝑥 ) = ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ) |
5 |
4
|
2ralbii |
⊢ ( ∀ 𝑦 ∈ 𝑇 ∀ 𝑥 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑀 ) 𝑥 ) ↔ ∀ 𝑦 ∈ 𝑇 ∀ 𝑥 ∈ 𝑆 ( 𝑦 ( +g ‘ 𝑀 ) 𝑥 ) = ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ) |
6 |
3 5
|
bitri |
⊢ ( ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑇 ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑀 ) 𝑥 ) ↔ ∀ 𝑦 ∈ 𝑇 ∀ 𝑥 ∈ 𝑆 ( 𝑦 ( +g ‘ 𝑀 ) 𝑥 ) = ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ) |
7 |
6
|
a1i |
⊢ ( ( 𝑆 ⊆ 𝐵 ∧ 𝑇 ⊆ 𝐵 ) → ( ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑇 ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑀 ) 𝑥 ) ↔ ∀ 𝑦 ∈ 𝑇 ∀ 𝑥 ∈ 𝑆 ( 𝑦 ( +g ‘ 𝑀 ) 𝑥 ) = ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ) ) |
8 |
|
eqid |
⊢ ( +g ‘ 𝑀 ) = ( +g ‘ 𝑀 ) |
9 |
1 8 2
|
sscntz |
⊢ ( ( 𝑆 ⊆ 𝐵 ∧ 𝑇 ⊆ 𝐵 ) → ( 𝑆 ⊆ ( 𝑍 ‘ 𝑇 ) ↔ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑇 ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑀 ) 𝑥 ) ) ) |
10 |
1 8 2
|
sscntz |
⊢ ( ( 𝑇 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝐵 ) → ( 𝑇 ⊆ ( 𝑍 ‘ 𝑆 ) ↔ ∀ 𝑦 ∈ 𝑇 ∀ 𝑥 ∈ 𝑆 ( 𝑦 ( +g ‘ 𝑀 ) 𝑥 ) = ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ) ) |
11 |
10
|
ancoms |
⊢ ( ( 𝑆 ⊆ 𝐵 ∧ 𝑇 ⊆ 𝐵 ) → ( 𝑇 ⊆ ( 𝑍 ‘ 𝑆 ) ↔ ∀ 𝑦 ∈ 𝑇 ∀ 𝑥 ∈ 𝑆 ( 𝑦 ( +g ‘ 𝑀 ) 𝑥 ) = ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ) ) |
12 |
7 9 11
|
3bitr4d |
⊢ ( ( 𝑆 ⊆ 𝐵 ∧ 𝑇 ⊆ 𝐵 ) → ( 𝑆 ⊆ ( 𝑍 ‘ 𝑇 ) ↔ 𝑇 ⊆ ( 𝑍 ‘ 𝑆 ) ) ) |