| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cntzrecd.z |
⊢ 𝑍 = ( Cntz ‘ 𝐺 ) |
| 2 |
|
cntzrecd.t |
⊢ ( 𝜑 → 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 3 |
|
cntzrecd.u |
⊢ ( 𝜑 → 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 4 |
|
cntzrecd.s |
⊢ ( 𝜑 → 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) |
| 5 |
|
eqid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) |
| 6 |
5
|
subgss |
⊢ ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) → 𝑇 ⊆ ( Base ‘ 𝐺 ) ) |
| 7 |
5
|
subgss |
⊢ ( 𝑈 ∈ ( SubGrp ‘ 𝐺 ) → 𝑈 ⊆ ( Base ‘ 𝐺 ) ) |
| 8 |
5 1
|
cntzrec |
⊢ ( ( 𝑇 ⊆ ( Base ‘ 𝐺 ) ∧ 𝑈 ⊆ ( Base ‘ 𝐺 ) ) → ( 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ↔ 𝑈 ⊆ ( 𝑍 ‘ 𝑇 ) ) ) |
| 9 |
6 7 8
|
syl2an |
⊢ ( ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) → ( 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ↔ 𝑈 ⊆ ( 𝑍 ‘ 𝑇 ) ) ) |
| 10 |
2 3 9
|
syl2anc |
⊢ ( 𝜑 → ( 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ↔ 𝑈 ⊆ ( 𝑍 ‘ 𝑇 ) ) ) |
| 11 |
4 10
|
mpbid |
⊢ ( 𝜑 → 𝑈 ⊆ ( 𝑍 ‘ 𝑇 ) ) |