| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cntzsgrpcl.b | ⊢ 𝐵  =  ( Base ‘ 𝑀 ) | 
						
							| 2 |  | cntzsgrpcl.z | ⊢ 𝑍  =  ( Cntz ‘ 𝑀 ) | 
						
							| 3 |  | cntzsgrpcl.c | ⊢ 𝐶  =  ( 𝑍 ‘ 𝑆 ) | 
						
							| 4 |  | simpll | ⊢ ( ( ( 𝑀  ∈  Smgrp  ∧  𝑆  ⊆  𝐵 )  ∧  ( 𝑦  ∈  𝐶  ∧  𝑧  ∈  𝐶 ) )  →  𝑀  ∈  Smgrp ) | 
						
							| 5 | 1 2 | cntzssv | ⊢ ( 𝑍 ‘ 𝑆 )  ⊆  𝐵 | 
						
							| 6 | 3 5 | eqsstri | ⊢ 𝐶  ⊆  𝐵 | 
						
							| 7 |  | simprl | ⊢ ( ( ( 𝑀  ∈  Smgrp  ∧  𝑆  ⊆  𝐵 )  ∧  ( 𝑦  ∈  𝐶  ∧  𝑧  ∈  𝐶 ) )  →  𝑦  ∈  𝐶 ) | 
						
							| 8 | 6 7 | sselid | ⊢ ( ( ( 𝑀  ∈  Smgrp  ∧  𝑆  ⊆  𝐵 )  ∧  ( 𝑦  ∈  𝐶  ∧  𝑧  ∈  𝐶 ) )  →  𝑦  ∈  𝐵 ) | 
						
							| 9 |  | simprr | ⊢ ( ( ( 𝑀  ∈  Smgrp  ∧  𝑆  ⊆  𝐵 )  ∧  ( 𝑦  ∈  𝐶  ∧  𝑧  ∈  𝐶 ) )  →  𝑧  ∈  𝐶 ) | 
						
							| 10 | 6 9 | sselid | ⊢ ( ( ( 𝑀  ∈  Smgrp  ∧  𝑆  ⊆  𝐵 )  ∧  ( 𝑦  ∈  𝐶  ∧  𝑧  ∈  𝐶 ) )  →  𝑧  ∈  𝐵 ) | 
						
							| 11 |  | eqid | ⊢ ( +g ‘ 𝑀 )  =  ( +g ‘ 𝑀 ) | 
						
							| 12 | 1 11 | sgrpcl | ⊢ ( ( 𝑀  ∈  Smgrp  ∧  𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 )  →  ( 𝑦 ( +g ‘ 𝑀 ) 𝑧 )  ∈  𝐵 ) | 
						
							| 13 | 4 8 10 12 | syl3anc | ⊢ ( ( ( 𝑀  ∈  Smgrp  ∧  𝑆  ⊆  𝐵 )  ∧  ( 𝑦  ∈  𝐶  ∧  𝑧  ∈  𝐶 ) )  →  ( 𝑦 ( +g ‘ 𝑀 ) 𝑧 )  ∈  𝐵 ) | 
						
							| 14 | 4 | adantr | ⊢ ( ( ( ( 𝑀  ∈  Smgrp  ∧  𝑆  ⊆  𝐵 )  ∧  ( 𝑦  ∈  𝐶  ∧  𝑧  ∈  𝐶 ) )  ∧  𝑥  ∈  𝑆 )  →  𝑀  ∈  Smgrp ) | 
						
							| 15 | 8 | adantr | ⊢ ( ( ( ( 𝑀  ∈  Smgrp  ∧  𝑆  ⊆  𝐵 )  ∧  ( 𝑦  ∈  𝐶  ∧  𝑧  ∈  𝐶 ) )  ∧  𝑥  ∈  𝑆 )  →  𝑦  ∈  𝐵 ) | 
						
							| 16 | 10 | adantr | ⊢ ( ( ( ( 𝑀  ∈  Smgrp  ∧  𝑆  ⊆  𝐵 )  ∧  ( 𝑦  ∈  𝐶  ∧  𝑧  ∈  𝐶 ) )  ∧  𝑥  ∈  𝑆 )  →  𝑧  ∈  𝐵 ) | 
						
							| 17 |  | simpr | ⊢ ( ( 𝑀  ∈  Smgrp  ∧  𝑆  ⊆  𝐵 )  →  𝑆  ⊆  𝐵 ) | 
						
							| 18 | 17 | sselda | ⊢ ( ( ( 𝑀  ∈  Smgrp  ∧  𝑆  ⊆  𝐵 )  ∧  𝑥  ∈  𝑆 )  →  𝑥  ∈  𝐵 ) | 
						
							| 19 | 18 | adantlr | ⊢ ( ( ( ( 𝑀  ∈  Smgrp  ∧  𝑆  ⊆  𝐵 )  ∧  ( 𝑦  ∈  𝐶  ∧  𝑧  ∈  𝐶 ) )  ∧  𝑥  ∈  𝑆 )  →  𝑥  ∈  𝐵 ) | 
						
							| 20 | 1 11 | sgrpass | ⊢ ( ( 𝑀  ∈  Smgrp  ∧  ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵  ∧  𝑥  ∈  𝐵 ) )  →  ( ( 𝑦 ( +g ‘ 𝑀 ) 𝑧 ) ( +g ‘ 𝑀 ) 𝑥 )  =  ( 𝑦 ( +g ‘ 𝑀 ) ( 𝑧 ( +g ‘ 𝑀 ) 𝑥 ) ) ) | 
						
							| 21 | 14 15 16 19 20 | syl13anc | ⊢ ( ( ( ( 𝑀  ∈  Smgrp  ∧  𝑆  ⊆  𝐵 )  ∧  ( 𝑦  ∈  𝐶  ∧  𝑧  ∈  𝐶 ) )  ∧  𝑥  ∈  𝑆 )  →  ( ( 𝑦 ( +g ‘ 𝑀 ) 𝑧 ) ( +g ‘ 𝑀 ) 𝑥 )  =  ( 𝑦 ( +g ‘ 𝑀 ) ( 𝑧 ( +g ‘ 𝑀 ) 𝑥 ) ) ) | 
						
							| 22 | 3 | eleq2i | ⊢ ( 𝑧  ∈  𝐶  ↔  𝑧  ∈  ( 𝑍 ‘ 𝑆 ) ) | 
						
							| 23 | 11 2 | cntzi | ⊢ ( ( 𝑧  ∈  ( 𝑍 ‘ 𝑆 )  ∧  𝑥  ∈  𝑆 )  →  ( 𝑧 ( +g ‘ 𝑀 ) 𝑥 )  =  ( 𝑥 ( +g ‘ 𝑀 ) 𝑧 ) ) | 
						
							| 24 | 22 23 | sylanb | ⊢ ( ( 𝑧  ∈  𝐶  ∧  𝑥  ∈  𝑆 )  →  ( 𝑧 ( +g ‘ 𝑀 ) 𝑥 )  =  ( 𝑥 ( +g ‘ 𝑀 ) 𝑧 ) ) | 
						
							| 25 | 9 24 | sylan | ⊢ ( ( ( ( 𝑀  ∈  Smgrp  ∧  𝑆  ⊆  𝐵 )  ∧  ( 𝑦  ∈  𝐶  ∧  𝑧  ∈  𝐶 ) )  ∧  𝑥  ∈  𝑆 )  →  ( 𝑧 ( +g ‘ 𝑀 ) 𝑥 )  =  ( 𝑥 ( +g ‘ 𝑀 ) 𝑧 ) ) | 
						
							| 26 | 25 | oveq2d | ⊢ ( ( ( ( 𝑀  ∈  Smgrp  ∧  𝑆  ⊆  𝐵 )  ∧  ( 𝑦  ∈  𝐶  ∧  𝑧  ∈  𝐶 ) )  ∧  𝑥  ∈  𝑆 )  →  ( 𝑦 ( +g ‘ 𝑀 ) ( 𝑧 ( +g ‘ 𝑀 ) 𝑥 ) )  =  ( 𝑦 ( +g ‘ 𝑀 ) ( 𝑥 ( +g ‘ 𝑀 ) 𝑧 ) ) ) | 
						
							| 27 | 1 11 | sgrpass | ⊢ ( ( 𝑀  ∈  Smgrp  ∧  ( 𝑦  ∈  𝐵  ∧  𝑥  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) )  →  ( ( 𝑦 ( +g ‘ 𝑀 ) 𝑥 ) ( +g ‘ 𝑀 ) 𝑧 )  =  ( 𝑦 ( +g ‘ 𝑀 ) ( 𝑥 ( +g ‘ 𝑀 ) 𝑧 ) ) ) | 
						
							| 28 | 14 15 19 16 27 | syl13anc | ⊢ ( ( ( ( 𝑀  ∈  Smgrp  ∧  𝑆  ⊆  𝐵 )  ∧  ( 𝑦  ∈  𝐶  ∧  𝑧  ∈  𝐶 ) )  ∧  𝑥  ∈  𝑆 )  →  ( ( 𝑦 ( +g ‘ 𝑀 ) 𝑥 ) ( +g ‘ 𝑀 ) 𝑧 )  =  ( 𝑦 ( +g ‘ 𝑀 ) ( 𝑥 ( +g ‘ 𝑀 ) 𝑧 ) ) ) | 
						
							| 29 | 3 | eleq2i | ⊢ ( 𝑦  ∈  𝐶  ↔  𝑦  ∈  ( 𝑍 ‘ 𝑆 ) ) | 
						
							| 30 | 11 2 | cntzi | ⊢ ( ( 𝑦  ∈  ( 𝑍 ‘ 𝑆 )  ∧  𝑥  ∈  𝑆 )  →  ( 𝑦 ( +g ‘ 𝑀 ) 𝑥 )  =  ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ) | 
						
							| 31 | 29 30 | sylanb | ⊢ ( ( 𝑦  ∈  𝐶  ∧  𝑥  ∈  𝑆 )  →  ( 𝑦 ( +g ‘ 𝑀 ) 𝑥 )  =  ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ) | 
						
							| 32 | 7 31 | sylan | ⊢ ( ( ( ( 𝑀  ∈  Smgrp  ∧  𝑆  ⊆  𝐵 )  ∧  ( 𝑦  ∈  𝐶  ∧  𝑧  ∈  𝐶 ) )  ∧  𝑥  ∈  𝑆 )  →  ( 𝑦 ( +g ‘ 𝑀 ) 𝑥 )  =  ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ) | 
						
							| 33 | 32 | oveq1d | ⊢ ( ( ( ( 𝑀  ∈  Smgrp  ∧  𝑆  ⊆  𝐵 )  ∧  ( 𝑦  ∈  𝐶  ∧  𝑧  ∈  𝐶 ) )  ∧  𝑥  ∈  𝑆 )  →  ( ( 𝑦 ( +g ‘ 𝑀 ) 𝑥 ) ( +g ‘ 𝑀 ) 𝑧 )  =  ( ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ( +g ‘ 𝑀 ) 𝑧 ) ) | 
						
							| 34 | 26 28 33 | 3eqtr2d | ⊢ ( ( ( ( 𝑀  ∈  Smgrp  ∧  𝑆  ⊆  𝐵 )  ∧  ( 𝑦  ∈  𝐶  ∧  𝑧  ∈  𝐶 ) )  ∧  𝑥  ∈  𝑆 )  →  ( 𝑦 ( +g ‘ 𝑀 ) ( 𝑧 ( +g ‘ 𝑀 ) 𝑥 ) )  =  ( ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ( +g ‘ 𝑀 ) 𝑧 ) ) | 
						
							| 35 | 1 11 | sgrpass | ⊢ ( ( 𝑀  ∈  Smgrp  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) )  →  ( ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ( +g ‘ 𝑀 ) 𝑧 )  =  ( 𝑥 ( +g ‘ 𝑀 ) ( 𝑦 ( +g ‘ 𝑀 ) 𝑧 ) ) ) | 
						
							| 36 | 14 19 15 16 35 | syl13anc | ⊢ ( ( ( ( 𝑀  ∈  Smgrp  ∧  𝑆  ⊆  𝐵 )  ∧  ( 𝑦  ∈  𝐶  ∧  𝑧  ∈  𝐶 ) )  ∧  𝑥  ∈  𝑆 )  →  ( ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ( +g ‘ 𝑀 ) 𝑧 )  =  ( 𝑥 ( +g ‘ 𝑀 ) ( 𝑦 ( +g ‘ 𝑀 ) 𝑧 ) ) ) | 
						
							| 37 | 21 34 36 | 3eqtrd | ⊢ ( ( ( ( 𝑀  ∈  Smgrp  ∧  𝑆  ⊆  𝐵 )  ∧  ( 𝑦  ∈  𝐶  ∧  𝑧  ∈  𝐶 ) )  ∧  𝑥  ∈  𝑆 )  →  ( ( 𝑦 ( +g ‘ 𝑀 ) 𝑧 ) ( +g ‘ 𝑀 ) 𝑥 )  =  ( 𝑥 ( +g ‘ 𝑀 ) ( 𝑦 ( +g ‘ 𝑀 ) 𝑧 ) ) ) | 
						
							| 38 | 37 | ralrimiva | ⊢ ( ( ( 𝑀  ∈  Smgrp  ∧  𝑆  ⊆  𝐵 )  ∧  ( 𝑦  ∈  𝐶  ∧  𝑧  ∈  𝐶 ) )  →  ∀ 𝑥  ∈  𝑆 ( ( 𝑦 ( +g ‘ 𝑀 ) 𝑧 ) ( +g ‘ 𝑀 ) 𝑥 )  =  ( 𝑥 ( +g ‘ 𝑀 ) ( 𝑦 ( +g ‘ 𝑀 ) 𝑧 ) ) ) | 
						
							| 39 | 3 | eleq2i | ⊢ ( ( 𝑦 ( +g ‘ 𝑀 ) 𝑧 )  ∈  𝐶  ↔  ( 𝑦 ( +g ‘ 𝑀 ) 𝑧 )  ∈  ( 𝑍 ‘ 𝑆 ) ) | 
						
							| 40 | 1 11 2 | elcntz | ⊢ ( 𝑆  ⊆  𝐵  →  ( ( 𝑦 ( +g ‘ 𝑀 ) 𝑧 )  ∈  ( 𝑍 ‘ 𝑆 )  ↔  ( ( 𝑦 ( +g ‘ 𝑀 ) 𝑧 )  ∈  𝐵  ∧  ∀ 𝑥  ∈  𝑆 ( ( 𝑦 ( +g ‘ 𝑀 ) 𝑧 ) ( +g ‘ 𝑀 ) 𝑥 )  =  ( 𝑥 ( +g ‘ 𝑀 ) ( 𝑦 ( +g ‘ 𝑀 ) 𝑧 ) ) ) ) ) | 
						
							| 41 | 39 40 | bitrid | ⊢ ( 𝑆  ⊆  𝐵  →  ( ( 𝑦 ( +g ‘ 𝑀 ) 𝑧 )  ∈  𝐶  ↔  ( ( 𝑦 ( +g ‘ 𝑀 ) 𝑧 )  ∈  𝐵  ∧  ∀ 𝑥  ∈  𝑆 ( ( 𝑦 ( +g ‘ 𝑀 ) 𝑧 ) ( +g ‘ 𝑀 ) 𝑥 )  =  ( 𝑥 ( +g ‘ 𝑀 ) ( 𝑦 ( +g ‘ 𝑀 ) 𝑧 ) ) ) ) ) | 
						
							| 42 | 41 | ad2antlr | ⊢ ( ( ( 𝑀  ∈  Smgrp  ∧  𝑆  ⊆  𝐵 )  ∧  ( 𝑦  ∈  𝐶  ∧  𝑧  ∈  𝐶 ) )  →  ( ( 𝑦 ( +g ‘ 𝑀 ) 𝑧 )  ∈  𝐶  ↔  ( ( 𝑦 ( +g ‘ 𝑀 ) 𝑧 )  ∈  𝐵  ∧  ∀ 𝑥  ∈  𝑆 ( ( 𝑦 ( +g ‘ 𝑀 ) 𝑧 ) ( +g ‘ 𝑀 ) 𝑥 )  =  ( 𝑥 ( +g ‘ 𝑀 ) ( 𝑦 ( +g ‘ 𝑀 ) 𝑧 ) ) ) ) ) | 
						
							| 43 | 13 38 42 | mpbir2and | ⊢ ( ( ( 𝑀  ∈  Smgrp  ∧  𝑆  ⊆  𝐵 )  ∧  ( 𝑦  ∈  𝐶  ∧  𝑧  ∈  𝐶 ) )  →  ( 𝑦 ( +g ‘ 𝑀 ) 𝑧 )  ∈  𝐶 ) | 
						
							| 44 | 43 | ralrimivva | ⊢ ( ( 𝑀  ∈  Smgrp  ∧  𝑆  ⊆  𝐵 )  →  ∀ 𝑦  ∈  𝐶 ∀ 𝑧  ∈  𝐶 ( 𝑦 ( +g ‘ 𝑀 ) 𝑧 )  ∈  𝐶 ) |