| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cntzfval.b |
⊢ 𝐵 = ( Base ‘ 𝑀 ) |
| 2 |
|
cntzfval.p |
⊢ + = ( +g ‘ 𝑀 ) |
| 3 |
|
cntzfval.z |
⊢ 𝑍 = ( Cntz ‘ 𝑀 ) |
| 4 |
|
snssi |
⊢ ( 𝑌 ∈ 𝐵 → { 𝑌 } ⊆ 𝐵 ) |
| 5 |
1 2 3
|
cntzval |
⊢ ( { 𝑌 } ⊆ 𝐵 → ( 𝑍 ‘ { 𝑌 } ) = { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ { 𝑌 } ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) } ) |
| 6 |
4 5
|
syl |
⊢ ( 𝑌 ∈ 𝐵 → ( 𝑍 ‘ { 𝑌 } ) = { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ { 𝑌 } ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) } ) |
| 7 |
|
oveq2 |
⊢ ( 𝑦 = 𝑌 → ( 𝑥 + 𝑦 ) = ( 𝑥 + 𝑌 ) ) |
| 8 |
|
oveq1 |
⊢ ( 𝑦 = 𝑌 → ( 𝑦 + 𝑥 ) = ( 𝑌 + 𝑥 ) ) |
| 9 |
7 8
|
eqeq12d |
⊢ ( 𝑦 = 𝑌 → ( ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) ↔ ( 𝑥 + 𝑌 ) = ( 𝑌 + 𝑥 ) ) ) |
| 10 |
9
|
ralsng |
⊢ ( 𝑌 ∈ 𝐵 → ( ∀ 𝑦 ∈ { 𝑌 } ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) ↔ ( 𝑥 + 𝑌 ) = ( 𝑌 + 𝑥 ) ) ) |
| 11 |
10
|
rabbidv |
⊢ ( 𝑌 ∈ 𝐵 → { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ { 𝑌 } ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) } = { 𝑥 ∈ 𝐵 ∣ ( 𝑥 + 𝑌 ) = ( 𝑌 + 𝑥 ) } ) |
| 12 |
6 11
|
eqtrd |
⊢ ( 𝑌 ∈ 𝐵 → ( 𝑍 ‘ { 𝑌 } ) = { 𝑥 ∈ 𝐵 ∣ ( 𝑥 + 𝑌 ) = ( 𝑌 + 𝑥 ) } ) |