Step |
Hyp |
Ref |
Expression |
1 |
|
cntzspan.z |
⊢ 𝑍 = ( Cntz ‘ 𝐺 ) |
2 |
|
cntzspan.k |
⊢ 𝐾 = ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) |
3 |
|
cntzspan.h |
⊢ 𝐻 = ( 𝐺 ↾s ( 𝐾 ‘ 𝑆 ) ) |
4 |
|
eqid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) |
5 |
4
|
submacs |
⊢ ( 𝐺 ∈ Mnd → ( SubMnd ‘ 𝐺 ) ∈ ( ACS ‘ ( Base ‘ 𝐺 ) ) ) |
6 |
5
|
adantr |
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑆 ⊆ ( 𝑍 ‘ 𝑆 ) ) → ( SubMnd ‘ 𝐺 ) ∈ ( ACS ‘ ( Base ‘ 𝐺 ) ) ) |
7 |
6
|
acsmred |
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑆 ⊆ ( 𝑍 ‘ 𝑆 ) ) → ( SubMnd ‘ 𝐺 ) ∈ ( Moore ‘ ( Base ‘ 𝐺 ) ) ) |
8 |
|
simpr |
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑆 ⊆ ( 𝑍 ‘ 𝑆 ) ) → 𝑆 ⊆ ( 𝑍 ‘ 𝑆 ) ) |
9 |
4 1
|
cntzssv |
⊢ ( 𝑍 ‘ 𝑆 ) ⊆ ( Base ‘ 𝐺 ) |
10 |
8 9
|
sstrdi |
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑆 ⊆ ( 𝑍 ‘ 𝑆 ) ) → 𝑆 ⊆ ( Base ‘ 𝐺 ) ) |
11 |
4 1
|
cntzsubm |
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑆 ⊆ ( Base ‘ 𝐺 ) ) → ( 𝑍 ‘ 𝑆 ) ∈ ( SubMnd ‘ 𝐺 ) ) |
12 |
10 11
|
syldan |
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑆 ⊆ ( 𝑍 ‘ 𝑆 ) ) → ( 𝑍 ‘ 𝑆 ) ∈ ( SubMnd ‘ 𝐺 ) ) |
13 |
2
|
mrcsscl |
⊢ ( ( ( SubMnd ‘ 𝐺 ) ∈ ( Moore ‘ ( Base ‘ 𝐺 ) ) ∧ 𝑆 ⊆ ( 𝑍 ‘ 𝑆 ) ∧ ( 𝑍 ‘ 𝑆 ) ∈ ( SubMnd ‘ 𝐺 ) ) → ( 𝐾 ‘ 𝑆 ) ⊆ ( 𝑍 ‘ 𝑆 ) ) |
14 |
7 8 12 13
|
syl3anc |
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑆 ⊆ ( 𝑍 ‘ 𝑆 ) ) → ( 𝐾 ‘ 𝑆 ) ⊆ ( 𝑍 ‘ 𝑆 ) ) |
15 |
7 2
|
mrcssvd |
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑆 ⊆ ( 𝑍 ‘ 𝑆 ) ) → ( 𝐾 ‘ 𝑆 ) ⊆ ( Base ‘ 𝐺 ) ) |
16 |
4 1
|
cntzrec |
⊢ ( ( ( 𝐾 ‘ 𝑆 ) ⊆ ( Base ‘ 𝐺 ) ∧ 𝑆 ⊆ ( Base ‘ 𝐺 ) ) → ( ( 𝐾 ‘ 𝑆 ) ⊆ ( 𝑍 ‘ 𝑆 ) ↔ 𝑆 ⊆ ( 𝑍 ‘ ( 𝐾 ‘ 𝑆 ) ) ) ) |
17 |
15 10 16
|
syl2anc |
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑆 ⊆ ( 𝑍 ‘ 𝑆 ) ) → ( ( 𝐾 ‘ 𝑆 ) ⊆ ( 𝑍 ‘ 𝑆 ) ↔ 𝑆 ⊆ ( 𝑍 ‘ ( 𝐾 ‘ 𝑆 ) ) ) ) |
18 |
14 17
|
mpbid |
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑆 ⊆ ( 𝑍 ‘ 𝑆 ) ) → 𝑆 ⊆ ( 𝑍 ‘ ( 𝐾 ‘ 𝑆 ) ) ) |
19 |
4 1
|
cntzsubm |
⊢ ( ( 𝐺 ∈ Mnd ∧ ( 𝐾 ‘ 𝑆 ) ⊆ ( Base ‘ 𝐺 ) ) → ( 𝑍 ‘ ( 𝐾 ‘ 𝑆 ) ) ∈ ( SubMnd ‘ 𝐺 ) ) |
20 |
15 19
|
syldan |
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑆 ⊆ ( 𝑍 ‘ 𝑆 ) ) → ( 𝑍 ‘ ( 𝐾 ‘ 𝑆 ) ) ∈ ( SubMnd ‘ 𝐺 ) ) |
21 |
2
|
mrcsscl |
⊢ ( ( ( SubMnd ‘ 𝐺 ) ∈ ( Moore ‘ ( Base ‘ 𝐺 ) ) ∧ 𝑆 ⊆ ( 𝑍 ‘ ( 𝐾 ‘ 𝑆 ) ) ∧ ( 𝑍 ‘ ( 𝐾 ‘ 𝑆 ) ) ∈ ( SubMnd ‘ 𝐺 ) ) → ( 𝐾 ‘ 𝑆 ) ⊆ ( 𝑍 ‘ ( 𝐾 ‘ 𝑆 ) ) ) |
22 |
7 18 20 21
|
syl3anc |
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑆 ⊆ ( 𝑍 ‘ 𝑆 ) ) → ( 𝐾 ‘ 𝑆 ) ⊆ ( 𝑍 ‘ ( 𝐾 ‘ 𝑆 ) ) ) |
23 |
2
|
mrccl |
⊢ ( ( ( SubMnd ‘ 𝐺 ) ∈ ( Moore ‘ ( Base ‘ 𝐺 ) ) ∧ 𝑆 ⊆ ( Base ‘ 𝐺 ) ) → ( 𝐾 ‘ 𝑆 ) ∈ ( SubMnd ‘ 𝐺 ) ) |
24 |
7 10 23
|
syl2anc |
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑆 ⊆ ( 𝑍 ‘ 𝑆 ) ) → ( 𝐾 ‘ 𝑆 ) ∈ ( SubMnd ‘ 𝐺 ) ) |
25 |
3 1
|
submcmn2 |
⊢ ( ( 𝐾 ‘ 𝑆 ) ∈ ( SubMnd ‘ 𝐺 ) → ( 𝐻 ∈ CMnd ↔ ( 𝐾 ‘ 𝑆 ) ⊆ ( 𝑍 ‘ ( 𝐾 ‘ 𝑆 ) ) ) ) |
26 |
24 25
|
syl |
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑆 ⊆ ( 𝑍 ‘ 𝑆 ) ) → ( 𝐻 ∈ CMnd ↔ ( 𝐾 ‘ 𝑆 ) ⊆ ( 𝑍 ‘ ( 𝐾 ‘ 𝑆 ) ) ) ) |
27 |
22 26
|
mpbird |
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑆 ⊆ ( 𝑍 ‘ 𝑆 ) ) → 𝐻 ∈ CMnd ) |