Metamath Proof Explorer


Theorem cntzssv

Description: The centralizer is unconditionally a subset. (Contributed by Stefan O'Rear, 6-Sep-2015)

Ref Expression
Hypotheses cntzrcl.b 𝐵 = ( Base ‘ 𝑀 )
cntzrcl.z 𝑍 = ( Cntz ‘ 𝑀 )
Assertion cntzssv ( 𝑍𝑆 ) ⊆ 𝐵

Proof

Step Hyp Ref Expression
1 cntzrcl.b 𝐵 = ( Base ‘ 𝑀 )
2 cntzrcl.z 𝑍 = ( Cntz ‘ 𝑀 )
3 0ss ∅ ⊆ 𝐵
4 sseq1 ( ( 𝑍𝑆 ) = ∅ → ( ( 𝑍𝑆 ) ⊆ 𝐵 ↔ ∅ ⊆ 𝐵 ) )
5 3 4 mpbiri ( ( 𝑍𝑆 ) = ∅ → ( 𝑍𝑆 ) ⊆ 𝐵 )
6 n0 ( ( 𝑍𝑆 ) ≠ ∅ ↔ ∃ 𝑥 𝑥 ∈ ( 𝑍𝑆 ) )
7 1 2 cntzrcl ( 𝑥 ∈ ( 𝑍𝑆 ) → ( 𝑀 ∈ V ∧ 𝑆𝐵 ) )
8 eqid ( +g𝑀 ) = ( +g𝑀 )
9 1 8 2 cntzval ( 𝑆𝐵 → ( 𝑍𝑆 ) = { 𝑥𝐵 ∣ ∀ 𝑦𝑆 ( 𝑥 ( +g𝑀 ) 𝑦 ) = ( 𝑦 ( +g𝑀 ) 𝑥 ) } )
10 7 9 simpl2im ( 𝑥 ∈ ( 𝑍𝑆 ) → ( 𝑍𝑆 ) = { 𝑥𝐵 ∣ ∀ 𝑦𝑆 ( 𝑥 ( +g𝑀 ) 𝑦 ) = ( 𝑦 ( +g𝑀 ) 𝑥 ) } )
11 ssrab2 { 𝑥𝐵 ∣ ∀ 𝑦𝑆 ( 𝑥 ( +g𝑀 ) 𝑦 ) = ( 𝑦 ( +g𝑀 ) 𝑥 ) } ⊆ 𝐵
12 10 11 eqsstrdi ( 𝑥 ∈ ( 𝑍𝑆 ) → ( 𝑍𝑆 ) ⊆ 𝐵 )
13 12 exlimiv ( ∃ 𝑥 𝑥 ∈ ( 𝑍𝑆 ) → ( 𝑍𝑆 ) ⊆ 𝐵 )
14 6 13 sylbi ( ( 𝑍𝑆 ) ≠ ∅ → ( 𝑍𝑆 ) ⊆ 𝐵 )
15 5 14 pm2.61ine ( 𝑍𝑆 ) ⊆ 𝐵