Step |
Hyp |
Ref |
Expression |
1 |
|
cntzrec.b |
⊢ 𝐵 = ( Base ‘ 𝑀 ) |
2 |
|
cntzrec.z |
⊢ 𝑍 = ( Cntz ‘ 𝑀 ) |
3 |
|
grpmnd |
⊢ ( 𝑀 ∈ Grp → 𝑀 ∈ Mnd ) |
4 |
1 2
|
cntzsubm |
⊢ ( ( 𝑀 ∈ Mnd ∧ 𝑆 ⊆ 𝐵 ) → ( 𝑍 ‘ 𝑆 ) ∈ ( SubMnd ‘ 𝑀 ) ) |
5 |
3 4
|
sylan |
⊢ ( ( 𝑀 ∈ Grp ∧ 𝑆 ⊆ 𝐵 ) → ( 𝑍 ‘ 𝑆 ) ∈ ( SubMnd ‘ 𝑀 ) ) |
6 |
|
simpll |
⊢ ( ( ( 𝑀 ∈ Grp ∧ 𝑆 ⊆ 𝐵 ) ∧ ( 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑦 ∈ 𝑆 ) ) → 𝑀 ∈ Grp ) |
7 |
1 2
|
cntzssv |
⊢ ( 𝑍 ‘ 𝑆 ) ⊆ 𝐵 |
8 |
|
simprl |
⊢ ( ( ( 𝑀 ∈ Grp ∧ 𝑆 ⊆ 𝐵 ) ∧ ( 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑦 ∈ 𝑆 ) ) → 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ) |
9 |
7 8
|
sselid |
⊢ ( ( ( 𝑀 ∈ Grp ∧ 𝑆 ⊆ 𝐵 ) ∧ ( 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑦 ∈ 𝑆 ) ) → 𝑥 ∈ 𝐵 ) |
10 |
|
eqid |
⊢ ( invg ‘ 𝑀 ) = ( invg ‘ 𝑀 ) |
11 |
1 10
|
grpinvcl |
⊢ ( ( 𝑀 ∈ Grp ∧ 𝑥 ∈ 𝐵 ) → ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ∈ 𝐵 ) |
12 |
6 9 11
|
syl2anc |
⊢ ( ( ( 𝑀 ∈ Grp ∧ 𝑆 ⊆ 𝐵 ) ∧ ( 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑦 ∈ 𝑆 ) ) → ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ∈ 𝐵 ) |
13 |
|
ssel2 |
⊢ ( ( 𝑆 ⊆ 𝐵 ∧ 𝑦 ∈ 𝑆 ) → 𝑦 ∈ 𝐵 ) |
14 |
13
|
ad2ant2l |
⊢ ( ( ( 𝑀 ∈ Grp ∧ 𝑆 ⊆ 𝐵 ) ∧ ( 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑦 ∈ 𝑆 ) ) → 𝑦 ∈ 𝐵 ) |
15 |
|
eqid |
⊢ ( +g ‘ 𝑀 ) = ( +g ‘ 𝑀 ) |
16 |
1 15
|
grpcl |
⊢ ( ( 𝑀 ∈ Grp ∧ 𝑥 ∈ 𝐵 ∧ ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ∈ 𝐵 ) → ( 𝑥 ( +g ‘ 𝑀 ) ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ) ∈ 𝐵 ) |
17 |
6 9 12 16
|
syl3anc |
⊢ ( ( ( 𝑀 ∈ Grp ∧ 𝑆 ⊆ 𝐵 ) ∧ ( 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 ( +g ‘ 𝑀 ) ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ) ∈ 𝐵 ) |
18 |
1 15
|
grpass |
⊢ ( ( 𝑀 ∈ Grp ∧ ( ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ ( 𝑥 ( +g ‘ 𝑀 ) ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ) ∈ 𝐵 ) ) → ( ( ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ( +g ‘ 𝑀 ) 𝑦 ) ( +g ‘ 𝑀 ) ( 𝑥 ( +g ‘ 𝑀 ) ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ) ) = ( ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ( +g ‘ 𝑀 ) ( 𝑦 ( +g ‘ 𝑀 ) ( 𝑥 ( +g ‘ 𝑀 ) ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ) ) ) ) |
19 |
6 12 14 17 18
|
syl13anc |
⊢ ( ( ( 𝑀 ∈ Grp ∧ 𝑆 ⊆ 𝐵 ) ∧ ( 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑦 ∈ 𝑆 ) ) → ( ( ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ( +g ‘ 𝑀 ) 𝑦 ) ( +g ‘ 𝑀 ) ( 𝑥 ( +g ‘ 𝑀 ) ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ) ) = ( ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ( +g ‘ 𝑀 ) ( 𝑦 ( +g ‘ 𝑀 ) ( 𝑥 ( +g ‘ 𝑀 ) ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ) ) ) ) |
20 |
1 15
|
grpass |
⊢ ( ( 𝑀 ∈ Grp ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ∧ ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ∈ 𝐵 ) ) → ( ( 𝑦 ( +g ‘ 𝑀 ) 𝑥 ) ( +g ‘ 𝑀 ) ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ) = ( 𝑦 ( +g ‘ 𝑀 ) ( 𝑥 ( +g ‘ 𝑀 ) ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ) ) ) |
21 |
6 14 9 12 20
|
syl13anc |
⊢ ( ( ( 𝑀 ∈ Grp ∧ 𝑆 ⊆ 𝐵 ) ∧ ( 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑦 ∈ 𝑆 ) ) → ( ( 𝑦 ( +g ‘ 𝑀 ) 𝑥 ) ( +g ‘ 𝑀 ) ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ) = ( 𝑦 ( +g ‘ 𝑀 ) ( 𝑥 ( +g ‘ 𝑀 ) ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ) ) ) |
22 |
21
|
oveq2d |
⊢ ( ( ( 𝑀 ∈ Grp ∧ 𝑆 ⊆ 𝐵 ) ∧ ( 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑦 ∈ 𝑆 ) ) → ( ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ( +g ‘ 𝑀 ) ( ( 𝑦 ( +g ‘ 𝑀 ) 𝑥 ) ( +g ‘ 𝑀 ) ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ) ) = ( ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ( +g ‘ 𝑀 ) ( 𝑦 ( +g ‘ 𝑀 ) ( 𝑥 ( +g ‘ 𝑀 ) ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ) ) ) ) |
23 |
19 22
|
eqtr4d |
⊢ ( ( ( 𝑀 ∈ Grp ∧ 𝑆 ⊆ 𝐵 ) ∧ ( 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑦 ∈ 𝑆 ) ) → ( ( ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ( +g ‘ 𝑀 ) 𝑦 ) ( +g ‘ 𝑀 ) ( 𝑥 ( +g ‘ 𝑀 ) ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ) ) = ( ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ( +g ‘ 𝑀 ) ( ( 𝑦 ( +g ‘ 𝑀 ) 𝑥 ) ( +g ‘ 𝑀 ) ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ) ) ) |
24 |
15 2
|
cntzi |
⊢ ( ( 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑦 ∈ 𝑆 ) → ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑀 ) 𝑥 ) ) |
25 |
24
|
adantl |
⊢ ( ( ( 𝑀 ∈ Grp ∧ 𝑆 ⊆ 𝐵 ) ∧ ( 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑀 ) 𝑥 ) ) |
26 |
25
|
oveq1d |
⊢ ( ( ( 𝑀 ∈ Grp ∧ 𝑆 ⊆ 𝐵 ) ∧ ( 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑦 ∈ 𝑆 ) ) → ( ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ( +g ‘ 𝑀 ) ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ) = ( ( 𝑦 ( +g ‘ 𝑀 ) 𝑥 ) ( +g ‘ 𝑀 ) ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ) ) |
27 |
26
|
oveq2d |
⊢ ( ( ( 𝑀 ∈ Grp ∧ 𝑆 ⊆ 𝐵 ) ∧ ( 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑦 ∈ 𝑆 ) ) → ( ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ( +g ‘ 𝑀 ) ( ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ( +g ‘ 𝑀 ) ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ) ) = ( ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ( +g ‘ 𝑀 ) ( ( 𝑦 ( +g ‘ 𝑀 ) 𝑥 ) ( +g ‘ 𝑀 ) ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ) ) ) |
28 |
23 27
|
eqtr4d |
⊢ ( ( ( 𝑀 ∈ Grp ∧ 𝑆 ⊆ 𝐵 ) ∧ ( 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑦 ∈ 𝑆 ) ) → ( ( ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ( +g ‘ 𝑀 ) 𝑦 ) ( +g ‘ 𝑀 ) ( 𝑥 ( +g ‘ 𝑀 ) ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ) ) = ( ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ( +g ‘ 𝑀 ) ( ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ( +g ‘ 𝑀 ) ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ) ) ) |
29 |
1 15
|
grpcl |
⊢ ( ( 𝑀 ∈ Grp ∧ 𝑦 ∈ 𝐵 ∧ ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ∈ 𝐵 ) → ( 𝑦 ( +g ‘ 𝑀 ) ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ) ∈ 𝐵 ) |
30 |
6 14 12 29
|
syl3anc |
⊢ ( ( ( 𝑀 ∈ Grp ∧ 𝑆 ⊆ 𝐵 ) ∧ ( 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑦 ( +g ‘ 𝑀 ) ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ) ∈ 𝐵 ) |
31 |
1 15
|
grpass |
⊢ ( ( 𝑀 ∈ Grp ∧ ( ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ∧ ( 𝑦 ( +g ‘ 𝑀 ) ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ) ∈ 𝐵 ) ) → ( ( ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ( +g ‘ 𝑀 ) 𝑥 ) ( +g ‘ 𝑀 ) ( 𝑦 ( +g ‘ 𝑀 ) ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ) ) = ( ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ( +g ‘ 𝑀 ) ( 𝑥 ( +g ‘ 𝑀 ) ( 𝑦 ( +g ‘ 𝑀 ) ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ) ) ) ) |
32 |
6 12 9 30 31
|
syl13anc |
⊢ ( ( ( 𝑀 ∈ Grp ∧ 𝑆 ⊆ 𝐵 ) ∧ ( 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑦 ∈ 𝑆 ) ) → ( ( ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ( +g ‘ 𝑀 ) 𝑥 ) ( +g ‘ 𝑀 ) ( 𝑦 ( +g ‘ 𝑀 ) ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ) ) = ( ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ( +g ‘ 𝑀 ) ( 𝑥 ( +g ‘ 𝑀 ) ( 𝑦 ( +g ‘ 𝑀 ) ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ) ) ) ) |
33 |
1 15
|
grpass |
⊢ ( ( 𝑀 ∈ Grp ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ∈ 𝐵 ) ) → ( ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ( +g ‘ 𝑀 ) ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ) = ( 𝑥 ( +g ‘ 𝑀 ) ( 𝑦 ( +g ‘ 𝑀 ) ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ) ) ) |
34 |
6 9 14 12 33
|
syl13anc |
⊢ ( ( ( 𝑀 ∈ Grp ∧ 𝑆 ⊆ 𝐵 ) ∧ ( 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑦 ∈ 𝑆 ) ) → ( ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ( +g ‘ 𝑀 ) ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ) = ( 𝑥 ( +g ‘ 𝑀 ) ( 𝑦 ( +g ‘ 𝑀 ) ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ) ) ) |
35 |
34
|
oveq2d |
⊢ ( ( ( 𝑀 ∈ Grp ∧ 𝑆 ⊆ 𝐵 ) ∧ ( 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑦 ∈ 𝑆 ) ) → ( ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ( +g ‘ 𝑀 ) ( ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ( +g ‘ 𝑀 ) ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ) ) = ( ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ( +g ‘ 𝑀 ) ( 𝑥 ( +g ‘ 𝑀 ) ( 𝑦 ( +g ‘ 𝑀 ) ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ) ) ) ) |
36 |
32 35
|
eqtr4d |
⊢ ( ( ( 𝑀 ∈ Grp ∧ 𝑆 ⊆ 𝐵 ) ∧ ( 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑦 ∈ 𝑆 ) ) → ( ( ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ( +g ‘ 𝑀 ) 𝑥 ) ( +g ‘ 𝑀 ) ( 𝑦 ( +g ‘ 𝑀 ) ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ) ) = ( ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ( +g ‘ 𝑀 ) ( ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ( +g ‘ 𝑀 ) ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ) ) ) |
37 |
28 36
|
eqtr4d |
⊢ ( ( ( 𝑀 ∈ Grp ∧ 𝑆 ⊆ 𝐵 ) ∧ ( 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑦 ∈ 𝑆 ) ) → ( ( ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ( +g ‘ 𝑀 ) 𝑦 ) ( +g ‘ 𝑀 ) ( 𝑥 ( +g ‘ 𝑀 ) ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ) ) = ( ( ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ( +g ‘ 𝑀 ) 𝑥 ) ( +g ‘ 𝑀 ) ( 𝑦 ( +g ‘ 𝑀 ) ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ) ) ) |
38 |
|
eqid |
⊢ ( 0g ‘ 𝑀 ) = ( 0g ‘ 𝑀 ) |
39 |
1 15 38 10
|
grprinv |
⊢ ( ( 𝑀 ∈ Grp ∧ 𝑥 ∈ 𝐵 ) → ( 𝑥 ( +g ‘ 𝑀 ) ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ) = ( 0g ‘ 𝑀 ) ) |
40 |
6 9 39
|
syl2anc |
⊢ ( ( ( 𝑀 ∈ Grp ∧ 𝑆 ⊆ 𝐵 ) ∧ ( 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 ( +g ‘ 𝑀 ) ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ) = ( 0g ‘ 𝑀 ) ) |
41 |
40
|
oveq2d |
⊢ ( ( ( 𝑀 ∈ Grp ∧ 𝑆 ⊆ 𝐵 ) ∧ ( 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑦 ∈ 𝑆 ) ) → ( ( ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ( +g ‘ 𝑀 ) 𝑦 ) ( +g ‘ 𝑀 ) ( 𝑥 ( +g ‘ 𝑀 ) ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ) ) = ( ( ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ( +g ‘ 𝑀 ) 𝑦 ) ( +g ‘ 𝑀 ) ( 0g ‘ 𝑀 ) ) ) |
42 |
1 15
|
grpcl |
⊢ ( ( 𝑀 ∈ Grp ∧ ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝐵 ) |
43 |
6 12 14 42
|
syl3anc |
⊢ ( ( ( 𝑀 ∈ Grp ∧ 𝑆 ⊆ 𝐵 ) ∧ ( 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑦 ∈ 𝑆 ) ) → ( ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝐵 ) |
44 |
1 15 38
|
grprid |
⊢ ( ( 𝑀 ∈ Grp ∧ ( ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝐵 ) → ( ( ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ( +g ‘ 𝑀 ) 𝑦 ) ( +g ‘ 𝑀 ) ( 0g ‘ 𝑀 ) ) = ( ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ( +g ‘ 𝑀 ) 𝑦 ) ) |
45 |
6 43 44
|
syl2anc |
⊢ ( ( ( 𝑀 ∈ Grp ∧ 𝑆 ⊆ 𝐵 ) ∧ ( 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑦 ∈ 𝑆 ) ) → ( ( ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ( +g ‘ 𝑀 ) 𝑦 ) ( +g ‘ 𝑀 ) ( 0g ‘ 𝑀 ) ) = ( ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ( +g ‘ 𝑀 ) 𝑦 ) ) |
46 |
41 45
|
eqtrd |
⊢ ( ( ( 𝑀 ∈ Grp ∧ 𝑆 ⊆ 𝐵 ) ∧ ( 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑦 ∈ 𝑆 ) ) → ( ( ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ( +g ‘ 𝑀 ) 𝑦 ) ( +g ‘ 𝑀 ) ( 𝑥 ( +g ‘ 𝑀 ) ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ) ) = ( ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ( +g ‘ 𝑀 ) 𝑦 ) ) |
47 |
1 15 38 10
|
grplinv |
⊢ ( ( 𝑀 ∈ Grp ∧ 𝑥 ∈ 𝐵 ) → ( ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ( +g ‘ 𝑀 ) 𝑥 ) = ( 0g ‘ 𝑀 ) ) |
48 |
6 9 47
|
syl2anc |
⊢ ( ( ( 𝑀 ∈ Grp ∧ 𝑆 ⊆ 𝐵 ) ∧ ( 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑦 ∈ 𝑆 ) ) → ( ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ( +g ‘ 𝑀 ) 𝑥 ) = ( 0g ‘ 𝑀 ) ) |
49 |
48
|
oveq1d |
⊢ ( ( ( 𝑀 ∈ Grp ∧ 𝑆 ⊆ 𝐵 ) ∧ ( 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑦 ∈ 𝑆 ) ) → ( ( ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ( +g ‘ 𝑀 ) 𝑥 ) ( +g ‘ 𝑀 ) ( 𝑦 ( +g ‘ 𝑀 ) ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ) ) = ( ( 0g ‘ 𝑀 ) ( +g ‘ 𝑀 ) ( 𝑦 ( +g ‘ 𝑀 ) ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ) ) ) |
50 |
1 15 38
|
grplid |
⊢ ( ( 𝑀 ∈ Grp ∧ ( 𝑦 ( +g ‘ 𝑀 ) ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ) ∈ 𝐵 ) → ( ( 0g ‘ 𝑀 ) ( +g ‘ 𝑀 ) ( 𝑦 ( +g ‘ 𝑀 ) ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ) ) = ( 𝑦 ( +g ‘ 𝑀 ) ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ) ) |
51 |
6 30 50
|
syl2anc |
⊢ ( ( ( 𝑀 ∈ Grp ∧ 𝑆 ⊆ 𝐵 ) ∧ ( 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑦 ∈ 𝑆 ) ) → ( ( 0g ‘ 𝑀 ) ( +g ‘ 𝑀 ) ( 𝑦 ( +g ‘ 𝑀 ) ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ) ) = ( 𝑦 ( +g ‘ 𝑀 ) ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ) ) |
52 |
49 51
|
eqtrd |
⊢ ( ( ( 𝑀 ∈ Grp ∧ 𝑆 ⊆ 𝐵 ) ∧ ( 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑦 ∈ 𝑆 ) ) → ( ( ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ( +g ‘ 𝑀 ) 𝑥 ) ( +g ‘ 𝑀 ) ( 𝑦 ( +g ‘ 𝑀 ) ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ) ) = ( 𝑦 ( +g ‘ 𝑀 ) ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ) ) |
53 |
37 46 52
|
3eqtr3d |
⊢ ( ( ( 𝑀 ∈ Grp ∧ 𝑆 ⊆ 𝐵 ) ∧ ( 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑦 ∈ 𝑆 ) ) → ( ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ( +g ‘ 𝑀 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑀 ) ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ) ) |
54 |
53
|
anassrs |
⊢ ( ( ( ( 𝑀 ∈ Grp ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ) ∧ 𝑦 ∈ 𝑆 ) → ( ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ( +g ‘ 𝑀 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑀 ) ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ) ) |
55 |
54
|
ralrimiva |
⊢ ( ( ( 𝑀 ∈ Grp ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ) → ∀ 𝑦 ∈ 𝑆 ( ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ( +g ‘ 𝑀 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑀 ) ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ) ) |
56 |
|
simplr |
⊢ ( ( ( 𝑀 ∈ Grp ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ) → 𝑆 ⊆ 𝐵 ) |
57 |
|
simpll |
⊢ ( ( ( 𝑀 ∈ Grp ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ) → 𝑀 ∈ Grp ) |
58 |
|
simpr |
⊢ ( ( ( 𝑀 ∈ Grp ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ) → 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ) |
59 |
7 58
|
sselid |
⊢ ( ( ( 𝑀 ∈ Grp ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ) → 𝑥 ∈ 𝐵 ) |
60 |
57 59 11
|
syl2anc |
⊢ ( ( ( 𝑀 ∈ Grp ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ) → ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ∈ 𝐵 ) |
61 |
1 15 2
|
cntzel |
⊢ ( ( 𝑆 ⊆ 𝐵 ∧ ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ∈ 𝐵 ) → ( ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ∈ ( 𝑍 ‘ 𝑆 ) ↔ ∀ 𝑦 ∈ 𝑆 ( ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ( +g ‘ 𝑀 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑀 ) ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ) ) ) |
62 |
56 60 61
|
syl2anc |
⊢ ( ( ( 𝑀 ∈ Grp ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ) → ( ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ∈ ( 𝑍 ‘ 𝑆 ) ↔ ∀ 𝑦 ∈ 𝑆 ( ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ( +g ‘ 𝑀 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑀 ) ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ) ) ) |
63 |
55 62
|
mpbird |
⊢ ( ( ( 𝑀 ∈ Grp ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ) → ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ∈ ( 𝑍 ‘ 𝑆 ) ) |
64 |
63
|
ralrimiva |
⊢ ( ( 𝑀 ∈ Grp ∧ 𝑆 ⊆ 𝐵 ) → ∀ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ∈ ( 𝑍 ‘ 𝑆 ) ) |
65 |
10
|
issubg3 |
⊢ ( 𝑀 ∈ Grp → ( ( 𝑍 ‘ 𝑆 ) ∈ ( SubGrp ‘ 𝑀 ) ↔ ( ( 𝑍 ‘ 𝑆 ) ∈ ( SubMnd ‘ 𝑀 ) ∧ ∀ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ∈ ( 𝑍 ‘ 𝑆 ) ) ) ) |
66 |
65
|
adantr |
⊢ ( ( 𝑀 ∈ Grp ∧ 𝑆 ⊆ 𝐵 ) → ( ( 𝑍 ‘ 𝑆 ) ∈ ( SubGrp ‘ 𝑀 ) ↔ ( ( 𝑍 ‘ 𝑆 ) ∈ ( SubMnd ‘ 𝑀 ) ∧ ∀ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ( ( invg ‘ 𝑀 ) ‘ 𝑥 ) ∈ ( 𝑍 ‘ 𝑆 ) ) ) ) |
67 |
5 64 66
|
mpbir2and |
⊢ ( ( 𝑀 ∈ Grp ∧ 𝑆 ⊆ 𝐵 ) → ( 𝑍 ‘ 𝑆 ) ∈ ( SubGrp ‘ 𝑀 ) ) |