| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cntzrec.b | ⊢ 𝐵  =  ( Base ‘ 𝑀 ) | 
						
							| 2 |  | cntzrec.z | ⊢ 𝑍  =  ( Cntz ‘ 𝑀 ) | 
						
							| 3 | 1 2 | cntzssv | ⊢ ( 𝑍 ‘ 𝑆 )  ⊆  𝐵 | 
						
							| 4 | 3 | a1i | ⊢ ( ( 𝑀  ∈  Mnd  ∧  𝑆  ⊆  𝐵 )  →  ( 𝑍 ‘ 𝑆 )  ⊆  𝐵 ) | 
						
							| 5 |  | eqid | ⊢ ( 0g ‘ 𝑀 )  =  ( 0g ‘ 𝑀 ) | 
						
							| 6 | 1 5 | mndidcl | ⊢ ( 𝑀  ∈  Mnd  →  ( 0g ‘ 𝑀 )  ∈  𝐵 ) | 
						
							| 7 | 6 | adantr | ⊢ ( ( 𝑀  ∈  Mnd  ∧  𝑆  ⊆  𝐵 )  →  ( 0g ‘ 𝑀 )  ∈  𝐵 ) | 
						
							| 8 |  | simpll | ⊢ ( ( ( 𝑀  ∈  Mnd  ∧  𝑆  ⊆  𝐵 )  ∧  𝑥  ∈  𝑆 )  →  𝑀  ∈  Mnd ) | 
						
							| 9 |  | simpr | ⊢ ( ( 𝑀  ∈  Mnd  ∧  𝑆  ⊆  𝐵 )  →  𝑆  ⊆  𝐵 ) | 
						
							| 10 | 9 | sselda | ⊢ ( ( ( 𝑀  ∈  Mnd  ∧  𝑆  ⊆  𝐵 )  ∧  𝑥  ∈  𝑆 )  →  𝑥  ∈  𝐵 ) | 
						
							| 11 |  | eqid | ⊢ ( +g ‘ 𝑀 )  =  ( +g ‘ 𝑀 ) | 
						
							| 12 | 1 11 5 | mndlid | ⊢ ( ( 𝑀  ∈  Mnd  ∧  𝑥  ∈  𝐵 )  →  ( ( 0g ‘ 𝑀 ) ( +g ‘ 𝑀 ) 𝑥 )  =  𝑥 ) | 
						
							| 13 | 8 10 12 | syl2anc | ⊢ ( ( ( 𝑀  ∈  Mnd  ∧  𝑆  ⊆  𝐵 )  ∧  𝑥  ∈  𝑆 )  →  ( ( 0g ‘ 𝑀 ) ( +g ‘ 𝑀 ) 𝑥 )  =  𝑥 ) | 
						
							| 14 | 1 11 5 | mndrid | ⊢ ( ( 𝑀  ∈  Mnd  ∧  𝑥  ∈  𝐵 )  →  ( 𝑥 ( +g ‘ 𝑀 ) ( 0g ‘ 𝑀 ) )  =  𝑥 ) | 
						
							| 15 | 8 10 14 | syl2anc | ⊢ ( ( ( 𝑀  ∈  Mnd  ∧  𝑆  ⊆  𝐵 )  ∧  𝑥  ∈  𝑆 )  →  ( 𝑥 ( +g ‘ 𝑀 ) ( 0g ‘ 𝑀 ) )  =  𝑥 ) | 
						
							| 16 | 13 15 | eqtr4d | ⊢ ( ( ( 𝑀  ∈  Mnd  ∧  𝑆  ⊆  𝐵 )  ∧  𝑥  ∈  𝑆 )  →  ( ( 0g ‘ 𝑀 ) ( +g ‘ 𝑀 ) 𝑥 )  =  ( 𝑥 ( +g ‘ 𝑀 ) ( 0g ‘ 𝑀 ) ) ) | 
						
							| 17 | 16 | ralrimiva | ⊢ ( ( 𝑀  ∈  Mnd  ∧  𝑆  ⊆  𝐵 )  →  ∀ 𝑥  ∈  𝑆 ( ( 0g ‘ 𝑀 ) ( +g ‘ 𝑀 ) 𝑥 )  =  ( 𝑥 ( +g ‘ 𝑀 ) ( 0g ‘ 𝑀 ) ) ) | 
						
							| 18 | 1 11 2 | elcntz | ⊢ ( 𝑆  ⊆  𝐵  →  ( ( 0g ‘ 𝑀 )  ∈  ( 𝑍 ‘ 𝑆 )  ↔  ( ( 0g ‘ 𝑀 )  ∈  𝐵  ∧  ∀ 𝑥  ∈  𝑆 ( ( 0g ‘ 𝑀 ) ( +g ‘ 𝑀 ) 𝑥 )  =  ( 𝑥 ( +g ‘ 𝑀 ) ( 0g ‘ 𝑀 ) ) ) ) ) | 
						
							| 19 | 18 | adantl | ⊢ ( ( 𝑀  ∈  Mnd  ∧  𝑆  ⊆  𝐵 )  →  ( ( 0g ‘ 𝑀 )  ∈  ( 𝑍 ‘ 𝑆 )  ↔  ( ( 0g ‘ 𝑀 )  ∈  𝐵  ∧  ∀ 𝑥  ∈  𝑆 ( ( 0g ‘ 𝑀 ) ( +g ‘ 𝑀 ) 𝑥 )  =  ( 𝑥 ( +g ‘ 𝑀 ) ( 0g ‘ 𝑀 ) ) ) ) ) | 
						
							| 20 | 7 17 19 | mpbir2and | ⊢ ( ( 𝑀  ∈  Mnd  ∧  𝑆  ⊆  𝐵 )  →  ( 0g ‘ 𝑀 )  ∈  ( 𝑍 ‘ 𝑆 ) ) | 
						
							| 21 |  | simpll | ⊢ ( ( ( 𝑀  ∈  Mnd  ∧  𝑆  ⊆  𝐵 )  ∧  ( 𝑦  ∈  ( 𝑍 ‘ 𝑆 )  ∧  𝑧  ∈  ( 𝑍 ‘ 𝑆 ) ) )  →  𝑀  ∈  Mnd ) | 
						
							| 22 |  | simprl | ⊢ ( ( ( 𝑀  ∈  Mnd  ∧  𝑆  ⊆  𝐵 )  ∧  ( 𝑦  ∈  ( 𝑍 ‘ 𝑆 )  ∧  𝑧  ∈  ( 𝑍 ‘ 𝑆 ) ) )  →  𝑦  ∈  ( 𝑍 ‘ 𝑆 ) ) | 
						
							| 23 | 3 22 | sselid | ⊢ ( ( ( 𝑀  ∈  Mnd  ∧  𝑆  ⊆  𝐵 )  ∧  ( 𝑦  ∈  ( 𝑍 ‘ 𝑆 )  ∧  𝑧  ∈  ( 𝑍 ‘ 𝑆 ) ) )  →  𝑦  ∈  𝐵 ) | 
						
							| 24 |  | simprr | ⊢ ( ( ( 𝑀  ∈  Mnd  ∧  𝑆  ⊆  𝐵 )  ∧  ( 𝑦  ∈  ( 𝑍 ‘ 𝑆 )  ∧  𝑧  ∈  ( 𝑍 ‘ 𝑆 ) ) )  →  𝑧  ∈  ( 𝑍 ‘ 𝑆 ) ) | 
						
							| 25 | 3 24 | sselid | ⊢ ( ( ( 𝑀  ∈  Mnd  ∧  𝑆  ⊆  𝐵 )  ∧  ( 𝑦  ∈  ( 𝑍 ‘ 𝑆 )  ∧  𝑧  ∈  ( 𝑍 ‘ 𝑆 ) ) )  →  𝑧  ∈  𝐵 ) | 
						
							| 26 | 1 11 | mndcl | ⊢ ( ( 𝑀  ∈  Mnd  ∧  𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 )  →  ( 𝑦 ( +g ‘ 𝑀 ) 𝑧 )  ∈  𝐵 ) | 
						
							| 27 | 21 23 25 26 | syl3anc | ⊢ ( ( ( 𝑀  ∈  Mnd  ∧  𝑆  ⊆  𝐵 )  ∧  ( 𝑦  ∈  ( 𝑍 ‘ 𝑆 )  ∧  𝑧  ∈  ( 𝑍 ‘ 𝑆 ) ) )  →  ( 𝑦 ( +g ‘ 𝑀 ) 𝑧 )  ∈  𝐵 ) | 
						
							| 28 | 21 | adantr | ⊢ ( ( ( ( 𝑀  ∈  Mnd  ∧  𝑆  ⊆  𝐵 )  ∧  ( 𝑦  ∈  ( 𝑍 ‘ 𝑆 )  ∧  𝑧  ∈  ( 𝑍 ‘ 𝑆 ) ) )  ∧  𝑥  ∈  𝑆 )  →  𝑀  ∈  Mnd ) | 
						
							| 29 | 23 | adantr | ⊢ ( ( ( ( 𝑀  ∈  Mnd  ∧  𝑆  ⊆  𝐵 )  ∧  ( 𝑦  ∈  ( 𝑍 ‘ 𝑆 )  ∧  𝑧  ∈  ( 𝑍 ‘ 𝑆 ) ) )  ∧  𝑥  ∈  𝑆 )  →  𝑦  ∈  𝐵 ) | 
						
							| 30 | 25 | adantr | ⊢ ( ( ( ( 𝑀  ∈  Mnd  ∧  𝑆  ⊆  𝐵 )  ∧  ( 𝑦  ∈  ( 𝑍 ‘ 𝑆 )  ∧  𝑧  ∈  ( 𝑍 ‘ 𝑆 ) ) )  ∧  𝑥  ∈  𝑆 )  →  𝑧  ∈  𝐵 ) | 
						
							| 31 | 10 | adantlr | ⊢ ( ( ( ( 𝑀  ∈  Mnd  ∧  𝑆  ⊆  𝐵 )  ∧  ( 𝑦  ∈  ( 𝑍 ‘ 𝑆 )  ∧  𝑧  ∈  ( 𝑍 ‘ 𝑆 ) ) )  ∧  𝑥  ∈  𝑆 )  →  𝑥  ∈  𝐵 ) | 
						
							| 32 | 1 11 | mndass | ⊢ ( ( 𝑀  ∈  Mnd  ∧  ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵  ∧  𝑥  ∈  𝐵 ) )  →  ( ( 𝑦 ( +g ‘ 𝑀 ) 𝑧 ) ( +g ‘ 𝑀 ) 𝑥 )  =  ( 𝑦 ( +g ‘ 𝑀 ) ( 𝑧 ( +g ‘ 𝑀 ) 𝑥 ) ) ) | 
						
							| 33 | 28 29 30 31 32 | syl13anc | ⊢ ( ( ( ( 𝑀  ∈  Mnd  ∧  𝑆  ⊆  𝐵 )  ∧  ( 𝑦  ∈  ( 𝑍 ‘ 𝑆 )  ∧  𝑧  ∈  ( 𝑍 ‘ 𝑆 ) ) )  ∧  𝑥  ∈  𝑆 )  →  ( ( 𝑦 ( +g ‘ 𝑀 ) 𝑧 ) ( +g ‘ 𝑀 ) 𝑥 )  =  ( 𝑦 ( +g ‘ 𝑀 ) ( 𝑧 ( +g ‘ 𝑀 ) 𝑥 ) ) ) | 
						
							| 34 | 11 2 | cntzi | ⊢ ( ( 𝑧  ∈  ( 𝑍 ‘ 𝑆 )  ∧  𝑥  ∈  𝑆 )  →  ( 𝑧 ( +g ‘ 𝑀 ) 𝑥 )  =  ( 𝑥 ( +g ‘ 𝑀 ) 𝑧 ) ) | 
						
							| 35 | 24 34 | sylan | ⊢ ( ( ( ( 𝑀  ∈  Mnd  ∧  𝑆  ⊆  𝐵 )  ∧  ( 𝑦  ∈  ( 𝑍 ‘ 𝑆 )  ∧  𝑧  ∈  ( 𝑍 ‘ 𝑆 ) ) )  ∧  𝑥  ∈  𝑆 )  →  ( 𝑧 ( +g ‘ 𝑀 ) 𝑥 )  =  ( 𝑥 ( +g ‘ 𝑀 ) 𝑧 ) ) | 
						
							| 36 | 35 | oveq2d | ⊢ ( ( ( ( 𝑀  ∈  Mnd  ∧  𝑆  ⊆  𝐵 )  ∧  ( 𝑦  ∈  ( 𝑍 ‘ 𝑆 )  ∧  𝑧  ∈  ( 𝑍 ‘ 𝑆 ) ) )  ∧  𝑥  ∈  𝑆 )  →  ( 𝑦 ( +g ‘ 𝑀 ) ( 𝑧 ( +g ‘ 𝑀 ) 𝑥 ) )  =  ( 𝑦 ( +g ‘ 𝑀 ) ( 𝑥 ( +g ‘ 𝑀 ) 𝑧 ) ) ) | 
						
							| 37 | 1 11 | mndass | ⊢ ( ( 𝑀  ∈  Mnd  ∧  ( 𝑦  ∈  𝐵  ∧  𝑥  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) )  →  ( ( 𝑦 ( +g ‘ 𝑀 ) 𝑥 ) ( +g ‘ 𝑀 ) 𝑧 )  =  ( 𝑦 ( +g ‘ 𝑀 ) ( 𝑥 ( +g ‘ 𝑀 ) 𝑧 ) ) ) | 
						
							| 38 | 28 29 31 30 37 | syl13anc | ⊢ ( ( ( ( 𝑀  ∈  Mnd  ∧  𝑆  ⊆  𝐵 )  ∧  ( 𝑦  ∈  ( 𝑍 ‘ 𝑆 )  ∧  𝑧  ∈  ( 𝑍 ‘ 𝑆 ) ) )  ∧  𝑥  ∈  𝑆 )  →  ( ( 𝑦 ( +g ‘ 𝑀 ) 𝑥 ) ( +g ‘ 𝑀 ) 𝑧 )  =  ( 𝑦 ( +g ‘ 𝑀 ) ( 𝑥 ( +g ‘ 𝑀 ) 𝑧 ) ) ) | 
						
							| 39 | 11 2 | cntzi | ⊢ ( ( 𝑦  ∈  ( 𝑍 ‘ 𝑆 )  ∧  𝑥  ∈  𝑆 )  →  ( 𝑦 ( +g ‘ 𝑀 ) 𝑥 )  =  ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ) | 
						
							| 40 | 22 39 | sylan | ⊢ ( ( ( ( 𝑀  ∈  Mnd  ∧  𝑆  ⊆  𝐵 )  ∧  ( 𝑦  ∈  ( 𝑍 ‘ 𝑆 )  ∧  𝑧  ∈  ( 𝑍 ‘ 𝑆 ) ) )  ∧  𝑥  ∈  𝑆 )  →  ( 𝑦 ( +g ‘ 𝑀 ) 𝑥 )  =  ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ) | 
						
							| 41 | 40 | oveq1d | ⊢ ( ( ( ( 𝑀  ∈  Mnd  ∧  𝑆  ⊆  𝐵 )  ∧  ( 𝑦  ∈  ( 𝑍 ‘ 𝑆 )  ∧  𝑧  ∈  ( 𝑍 ‘ 𝑆 ) ) )  ∧  𝑥  ∈  𝑆 )  →  ( ( 𝑦 ( +g ‘ 𝑀 ) 𝑥 ) ( +g ‘ 𝑀 ) 𝑧 )  =  ( ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ( +g ‘ 𝑀 ) 𝑧 ) ) | 
						
							| 42 | 36 38 41 | 3eqtr2d | ⊢ ( ( ( ( 𝑀  ∈  Mnd  ∧  𝑆  ⊆  𝐵 )  ∧  ( 𝑦  ∈  ( 𝑍 ‘ 𝑆 )  ∧  𝑧  ∈  ( 𝑍 ‘ 𝑆 ) ) )  ∧  𝑥  ∈  𝑆 )  →  ( 𝑦 ( +g ‘ 𝑀 ) ( 𝑧 ( +g ‘ 𝑀 ) 𝑥 ) )  =  ( ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ( +g ‘ 𝑀 ) 𝑧 ) ) | 
						
							| 43 | 1 11 | mndass | ⊢ ( ( 𝑀  ∈  Mnd  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) )  →  ( ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ( +g ‘ 𝑀 ) 𝑧 )  =  ( 𝑥 ( +g ‘ 𝑀 ) ( 𝑦 ( +g ‘ 𝑀 ) 𝑧 ) ) ) | 
						
							| 44 | 28 31 29 30 43 | syl13anc | ⊢ ( ( ( ( 𝑀  ∈  Mnd  ∧  𝑆  ⊆  𝐵 )  ∧  ( 𝑦  ∈  ( 𝑍 ‘ 𝑆 )  ∧  𝑧  ∈  ( 𝑍 ‘ 𝑆 ) ) )  ∧  𝑥  ∈  𝑆 )  →  ( ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ( +g ‘ 𝑀 ) 𝑧 )  =  ( 𝑥 ( +g ‘ 𝑀 ) ( 𝑦 ( +g ‘ 𝑀 ) 𝑧 ) ) ) | 
						
							| 45 | 33 42 44 | 3eqtrd | ⊢ ( ( ( ( 𝑀  ∈  Mnd  ∧  𝑆  ⊆  𝐵 )  ∧  ( 𝑦  ∈  ( 𝑍 ‘ 𝑆 )  ∧  𝑧  ∈  ( 𝑍 ‘ 𝑆 ) ) )  ∧  𝑥  ∈  𝑆 )  →  ( ( 𝑦 ( +g ‘ 𝑀 ) 𝑧 ) ( +g ‘ 𝑀 ) 𝑥 )  =  ( 𝑥 ( +g ‘ 𝑀 ) ( 𝑦 ( +g ‘ 𝑀 ) 𝑧 ) ) ) | 
						
							| 46 | 45 | ralrimiva | ⊢ ( ( ( 𝑀  ∈  Mnd  ∧  𝑆  ⊆  𝐵 )  ∧  ( 𝑦  ∈  ( 𝑍 ‘ 𝑆 )  ∧  𝑧  ∈  ( 𝑍 ‘ 𝑆 ) ) )  →  ∀ 𝑥  ∈  𝑆 ( ( 𝑦 ( +g ‘ 𝑀 ) 𝑧 ) ( +g ‘ 𝑀 ) 𝑥 )  =  ( 𝑥 ( +g ‘ 𝑀 ) ( 𝑦 ( +g ‘ 𝑀 ) 𝑧 ) ) ) | 
						
							| 47 | 1 11 2 | elcntz | ⊢ ( 𝑆  ⊆  𝐵  →  ( ( 𝑦 ( +g ‘ 𝑀 ) 𝑧 )  ∈  ( 𝑍 ‘ 𝑆 )  ↔  ( ( 𝑦 ( +g ‘ 𝑀 ) 𝑧 )  ∈  𝐵  ∧  ∀ 𝑥  ∈  𝑆 ( ( 𝑦 ( +g ‘ 𝑀 ) 𝑧 ) ( +g ‘ 𝑀 ) 𝑥 )  =  ( 𝑥 ( +g ‘ 𝑀 ) ( 𝑦 ( +g ‘ 𝑀 ) 𝑧 ) ) ) ) ) | 
						
							| 48 | 47 | ad2antlr | ⊢ ( ( ( 𝑀  ∈  Mnd  ∧  𝑆  ⊆  𝐵 )  ∧  ( 𝑦  ∈  ( 𝑍 ‘ 𝑆 )  ∧  𝑧  ∈  ( 𝑍 ‘ 𝑆 ) ) )  →  ( ( 𝑦 ( +g ‘ 𝑀 ) 𝑧 )  ∈  ( 𝑍 ‘ 𝑆 )  ↔  ( ( 𝑦 ( +g ‘ 𝑀 ) 𝑧 )  ∈  𝐵  ∧  ∀ 𝑥  ∈  𝑆 ( ( 𝑦 ( +g ‘ 𝑀 ) 𝑧 ) ( +g ‘ 𝑀 ) 𝑥 )  =  ( 𝑥 ( +g ‘ 𝑀 ) ( 𝑦 ( +g ‘ 𝑀 ) 𝑧 ) ) ) ) ) | 
						
							| 49 | 27 46 48 | mpbir2and | ⊢ ( ( ( 𝑀  ∈  Mnd  ∧  𝑆  ⊆  𝐵 )  ∧  ( 𝑦  ∈  ( 𝑍 ‘ 𝑆 )  ∧  𝑧  ∈  ( 𝑍 ‘ 𝑆 ) ) )  →  ( 𝑦 ( +g ‘ 𝑀 ) 𝑧 )  ∈  ( 𝑍 ‘ 𝑆 ) ) | 
						
							| 50 | 49 | ralrimivva | ⊢ ( ( 𝑀  ∈  Mnd  ∧  𝑆  ⊆  𝐵 )  →  ∀ 𝑦  ∈  ( 𝑍 ‘ 𝑆 ) ∀ 𝑧  ∈  ( 𝑍 ‘ 𝑆 ) ( 𝑦 ( +g ‘ 𝑀 ) 𝑧 )  ∈  ( 𝑍 ‘ 𝑆 ) ) | 
						
							| 51 | 1 5 11 | issubm | ⊢ ( 𝑀  ∈  Mnd  →  ( ( 𝑍 ‘ 𝑆 )  ∈  ( SubMnd ‘ 𝑀 )  ↔  ( ( 𝑍 ‘ 𝑆 )  ⊆  𝐵  ∧  ( 0g ‘ 𝑀 )  ∈  ( 𝑍 ‘ 𝑆 )  ∧  ∀ 𝑦  ∈  ( 𝑍 ‘ 𝑆 ) ∀ 𝑧  ∈  ( 𝑍 ‘ 𝑆 ) ( 𝑦 ( +g ‘ 𝑀 ) 𝑧 )  ∈  ( 𝑍 ‘ 𝑆 ) ) ) ) | 
						
							| 52 | 51 | adantr | ⊢ ( ( 𝑀  ∈  Mnd  ∧  𝑆  ⊆  𝐵 )  →  ( ( 𝑍 ‘ 𝑆 )  ∈  ( SubMnd ‘ 𝑀 )  ↔  ( ( 𝑍 ‘ 𝑆 )  ⊆  𝐵  ∧  ( 0g ‘ 𝑀 )  ∈  ( 𝑍 ‘ 𝑆 )  ∧  ∀ 𝑦  ∈  ( 𝑍 ‘ 𝑆 ) ∀ 𝑧  ∈  ( 𝑍 ‘ 𝑆 ) ( 𝑦 ( +g ‘ 𝑀 ) 𝑧 )  ∈  ( 𝑍 ‘ 𝑆 ) ) ) ) | 
						
							| 53 | 4 20 50 52 | mpbir3and | ⊢ ( ( 𝑀  ∈  Mnd  ∧  𝑆  ⊆  𝐵 )  →  ( 𝑍 ‘ 𝑆 )  ∈  ( SubMnd ‘ 𝑀 ) ) |