Step |
Hyp |
Ref |
Expression |
1 |
|
cntzsubrng.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
2 |
|
cntzsubrng.m |
⊢ 𝑀 = ( mulGrp ‘ 𝑅 ) |
3 |
|
cntzsubrng.z |
⊢ 𝑍 = ( Cntz ‘ 𝑀 ) |
4 |
2 1
|
mgpbas |
⊢ 𝐵 = ( Base ‘ 𝑀 ) |
5 |
4 3
|
cntzssv |
⊢ ( 𝑍 ‘ 𝑆 ) ⊆ 𝐵 |
6 |
5
|
a1i |
⊢ ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) → ( 𝑍 ‘ 𝑆 ) ⊆ 𝐵 ) |
7 |
|
simpll |
⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑧 ∈ 𝑆 ) → 𝑅 ∈ Rng ) |
8 |
|
ssel2 |
⊢ ( ( 𝑆 ⊆ 𝐵 ∧ 𝑧 ∈ 𝑆 ) → 𝑧 ∈ 𝐵 ) |
9 |
8
|
adantll |
⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑧 ∈ 𝑆 ) → 𝑧 ∈ 𝐵 ) |
10 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
11 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
12 |
1 10 11
|
rnglz |
⊢ ( ( 𝑅 ∈ Rng ∧ 𝑧 ∈ 𝐵 ) → ( ( 0g ‘ 𝑅 ) ( .r ‘ 𝑅 ) 𝑧 ) = ( 0g ‘ 𝑅 ) ) |
13 |
7 9 12
|
syl2anc |
⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑧 ∈ 𝑆 ) → ( ( 0g ‘ 𝑅 ) ( .r ‘ 𝑅 ) 𝑧 ) = ( 0g ‘ 𝑅 ) ) |
14 |
1 10 11
|
rngrz |
⊢ ( ( 𝑅 ∈ Rng ∧ 𝑧 ∈ 𝐵 ) → ( 𝑧 ( .r ‘ 𝑅 ) ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) |
15 |
7 9 14
|
syl2anc |
⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑧 ∈ 𝑆 ) → ( 𝑧 ( .r ‘ 𝑅 ) ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) |
16 |
13 15
|
eqtr4d |
⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑧 ∈ 𝑆 ) → ( ( 0g ‘ 𝑅 ) ( .r ‘ 𝑅 ) 𝑧 ) = ( 𝑧 ( .r ‘ 𝑅 ) ( 0g ‘ 𝑅 ) ) ) |
17 |
16
|
ralrimiva |
⊢ ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) → ∀ 𝑧 ∈ 𝑆 ( ( 0g ‘ 𝑅 ) ( .r ‘ 𝑅 ) 𝑧 ) = ( 𝑧 ( .r ‘ 𝑅 ) ( 0g ‘ 𝑅 ) ) ) |
18 |
|
simpr |
⊢ ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) → 𝑆 ⊆ 𝐵 ) |
19 |
1 11
|
rng0cl |
⊢ ( 𝑅 ∈ Rng → ( 0g ‘ 𝑅 ) ∈ 𝐵 ) |
20 |
19
|
adantr |
⊢ ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) → ( 0g ‘ 𝑅 ) ∈ 𝐵 ) |
21 |
2 10
|
mgpplusg |
⊢ ( .r ‘ 𝑅 ) = ( +g ‘ 𝑀 ) |
22 |
4 21 3
|
cntzel |
⊢ ( ( 𝑆 ⊆ 𝐵 ∧ ( 0g ‘ 𝑅 ) ∈ 𝐵 ) → ( ( 0g ‘ 𝑅 ) ∈ ( 𝑍 ‘ 𝑆 ) ↔ ∀ 𝑧 ∈ 𝑆 ( ( 0g ‘ 𝑅 ) ( .r ‘ 𝑅 ) 𝑧 ) = ( 𝑧 ( .r ‘ 𝑅 ) ( 0g ‘ 𝑅 ) ) ) ) |
23 |
18 20 22
|
syl2anc |
⊢ ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) → ( ( 0g ‘ 𝑅 ) ∈ ( 𝑍 ‘ 𝑆 ) ↔ ∀ 𝑧 ∈ 𝑆 ( ( 0g ‘ 𝑅 ) ( .r ‘ 𝑅 ) 𝑧 ) = ( 𝑧 ( .r ‘ 𝑅 ) ( 0g ‘ 𝑅 ) ) ) ) |
24 |
17 23
|
mpbird |
⊢ ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) → ( 0g ‘ 𝑅 ) ∈ ( 𝑍 ‘ 𝑆 ) ) |
25 |
24
|
ne0d |
⊢ ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) → ( 𝑍 ‘ 𝑆 ) ≠ ∅ ) |
26 |
|
simpl2 |
⊢ ( ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ) ∧ 𝑧 ∈ 𝑆 ) → 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ) |
27 |
21 3
|
cntzi |
⊢ ( ( 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑧 ∈ 𝑆 ) → ( 𝑥 ( .r ‘ 𝑅 ) 𝑧 ) = ( 𝑧 ( .r ‘ 𝑅 ) 𝑥 ) ) |
28 |
26 27
|
sylancom |
⊢ ( ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ) ∧ 𝑧 ∈ 𝑆 ) → ( 𝑥 ( .r ‘ 𝑅 ) 𝑧 ) = ( 𝑧 ( .r ‘ 𝑅 ) 𝑥 ) ) |
29 |
|
simpl3 |
⊢ ( ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ) ∧ 𝑧 ∈ 𝑆 ) → 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ) |
30 |
21 3
|
cntzi |
⊢ ( ( 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑧 ∈ 𝑆 ) → ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) = ( 𝑧 ( .r ‘ 𝑅 ) 𝑦 ) ) |
31 |
29 30
|
sylancom |
⊢ ( ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ) ∧ 𝑧 ∈ 𝑆 ) → ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) = ( 𝑧 ( .r ‘ 𝑅 ) 𝑦 ) ) |
32 |
28 31
|
oveq12d |
⊢ ( ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ) ∧ 𝑧 ∈ 𝑆 ) → ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑧 ) ( +g ‘ 𝑅 ) ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) ) = ( ( 𝑧 ( .r ‘ 𝑅 ) 𝑥 ) ( +g ‘ 𝑅 ) ( 𝑧 ( .r ‘ 𝑅 ) 𝑦 ) ) ) |
33 |
|
simpl1l |
⊢ ( ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ) ∧ 𝑧 ∈ 𝑆 ) → 𝑅 ∈ Rng ) |
34 |
5 26
|
sselid |
⊢ ( ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ) ∧ 𝑧 ∈ 𝑆 ) → 𝑥 ∈ 𝐵 ) |
35 |
5 29
|
sselid |
⊢ ( ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ) ∧ 𝑧 ∈ 𝑆 ) → 𝑦 ∈ 𝐵 ) |
36 |
|
simp1r |
⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ) → 𝑆 ⊆ 𝐵 ) |
37 |
36
|
sselda |
⊢ ( ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ) ∧ 𝑧 ∈ 𝑆 ) → 𝑧 ∈ 𝐵 ) |
38 |
|
eqid |
⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) |
39 |
1 38 10
|
rngdir |
⊢ ( ( 𝑅 ∈ Rng ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ( .r ‘ 𝑅 ) 𝑧 ) = ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑧 ) ( +g ‘ 𝑅 ) ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) ) ) |
40 |
33 34 35 37 39
|
syl13anc |
⊢ ( ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ) ∧ 𝑧 ∈ 𝑆 ) → ( ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ( .r ‘ 𝑅 ) 𝑧 ) = ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑧 ) ( +g ‘ 𝑅 ) ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) ) ) |
41 |
1 38 10
|
rngdi |
⊢ ( ( 𝑅 ∈ Rng ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑧 ( .r ‘ 𝑅 ) ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ) = ( ( 𝑧 ( .r ‘ 𝑅 ) 𝑥 ) ( +g ‘ 𝑅 ) ( 𝑧 ( .r ‘ 𝑅 ) 𝑦 ) ) ) |
42 |
33 37 34 35 41
|
syl13anc |
⊢ ( ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ) ∧ 𝑧 ∈ 𝑆 ) → ( 𝑧 ( .r ‘ 𝑅 ) ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ) = ( ( 𝑧 ( .r ‘ 𝑅 ) 𝑥 ) ( +g ‘ 𝑅 ) ( 𝑧 ( .r ‘ 𝑅 ) 𝑦 ) ) ) |
43 |
32 40 42
|
3eqtr4d |
⊢ ( ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ) ∧ 𝑧 ∈ 𝑆 ) → ( ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ( .r ‘ 𝑅 ) 𝑧 ) = ( 𝑧 ( .r ‘ 𝑅 ) ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ) ) |
44 |
43
|
ralrimiva |
⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ) → ∀ 𝑧 ∈ 𝑆 ( ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ( .r ‘ 𝑅 ) 𝑧 ) = ( 𝑧 ( .r ‘ 𝑅 ) ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ) ) |
45 |
|
simp1l |
⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ) → 𝑅 ∈ Rng ) |
46 |
|
simp2 |
⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ) → 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ) |
47 |
5 46
|
sselid |
⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ) → 𝑥 ∈ 𝐵 ) |
48 |
|
simp3 |
⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ) → 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ) |
49 |
5 48
|
sselid |
⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ) → 𝑦 ∈ 𝐵 ) |
50 |
1 38
|
rngacl |
⊢ ( ( 𝑅 ∈ Rng ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ∈ 𝐵 ) |
51 |
45 47 49 50
|
syl3anc |
⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ) → ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ∈ 𝐵 ) |
52 |
4 21 3
|
cntzel |
⊢ ( ( 𝑆 ⊆ 𝐵 ∧ ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ∈ 𝐵 ) → ( ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ∈ ( 𝑍 ‘ 𝑆 ) ↔ ∀ 𝑧 ∈ 𝑆 ( ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ( .r ‘ 𝑅 ) 𝑧 ) = ( 𝑧 ( .r ‘ 𝑅 ) ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ) ) ) |
53 |
36 51 52
|
syl2anc |
⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ) → ( ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ∈ ( 𝑍 ‘ 𝑆 ) ↔ ∀ 𝑧 ∈ 𝑆 ( ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ( .r ‘ 𝑅 ) 𝑧 ) = ( 𝑧 ( .r ‘ 𝑅 ) ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ) ) ) |
54 |
44 53
|
mpbird |
⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ) → ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ∈ ( 𝑍 ‘ 𝑆 ) ) |
55 |
54
|
3expa |
⊢ ( ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ) ∧ 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ) → ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ∈ ( 𝑍 ‘ 𝑆 ) ) |
56 |
55
|
ralrimiva |
⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ) → ∀ 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ∈ ( 𝑍 ‘ 𝑆 ) ) |
57 |
27
|
adantll |
⊢ ( ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ) ∧ 𝑧 ∈ 𝑆 ) → ( 𝑥 ( .r ‘ 𝑅 ) 𝑧 ) = ( 𝑧 ( .r ‘ 𝑅 ) 𝑥 ) ) |
58 |
57
|
fveq2d |
⊢ ( ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ) ∧ 𝑧 ∈ 𝑆 ) → ( ( invg ‘ 𝑅 ) ‘ ( 𝑥 ( .r ‘ 𝑅 ) 𝑧 ) ) = ( ( invg ‘ 𝑅 ) ‘ ( 𝑧 ( .r ‘ 𝑅 ) 𝑥 ) ) ) |
59 |
|
eqid |
⊢ ( invg ‘ 𝑅 ) = ( invg ‘ 𝑅 ) |
60 |
|
simplll |
⊢ ( ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ) ∧ 𝑧 ∈ 𝑆 ) → 𝑅 ∈ Rng ) |
61 |
|
simplr |
⊢ ( ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ) ∧ 𝑧 ∈ 𝑆 ) → 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ) |
62 |
5 61
|
sselid |
⊢ ( ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ) ∧ 𝑧 ∈ 𝑆 ) → 𝑥 ∈ 𝐵 ) |
63 |
|
simplr |
⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ) → 𝑆 ⊆ 𝐵 ) |
64 |
63
|
sselda |
⊢ ( ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ) ∧ 𝑧 ∈ 𝑆 ) → 𝑧 ∈ 𝐵 ) |
65 |
1 10 59 60 62 64
|
rngmneg1 |
⊢ ( ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ) ∧ 𝑧 ∈ 𝑆 ) → ( ( ( invg ‘ 𝑅 ) ‘ 𝑥 ) ( .r ‘ 𝑅 ) 𝑧 ) = ( ( invg ‘ 𝑅 ) ‘ ( 𝑥 ( .r ‘ 𝑅 ) 𝑧 ) ) ) |
66 |
1 10 59 60 64 62
|
rngmneg2 |
⊢ ( ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ) ∧ 𝑧 ∈ 𝑆 ) → ( 𝑧 ( .r ‘ 𝑅 ) ( ( invg ‘ 𝑅 ) ‘ 𝑥 ) ) = ( ( invg ‘ 𝑅 ) ‘ ( 𝑧 ( .r ‘ 𝑅 ) 𝑥 ) ) ) |
67 |
58 65 66
|
3eqtr4d |
⊢ ( ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ) ∧ 𝑧 ∈ 𝑆 ) → ( ( ( invg ‘ 𝑅 ) ‘ 𝑥 ) ( .r ‘ 𝑅 ) 𝑧 ) = ( 𝑧 ( .r ‘ 𝑅 ) ( ( invg ‘ 𝑅 ) ‘ 𝑥 ) ) ) |
68 |
67
|
ralrimiva |
⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ) → ∀ 𝑧 ∈ 𝑆 ( ( ( invg ‘ 𝑅 ) ‘ 𝑥 ) ( .r ‘ 𝑅 ) 𝑧 ) = ( 𝑧 ( .r ‘ 𝑅 ) ( ( invg ‘ 𝑅 ) ‘ 𝑥 ) ) ) |
69 |
|
rnggrp |
⊢ ( 𝑅 ∈ Rng → 𝑅 ∈ Grp ) |
70 |
69
|
ad2antrr |
⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ) → 𝑅 ∈ Grp ) |
71 |
|
simpr |
⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ) → 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ) |
72 |
5 71
|
sselid |
⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ) → 𝑥 ∈ 𝐵 ) |
73 |
1 59 70 72
|
grpinvcld |
⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ) → ( ( invg ‘ 𝑅 ) ‘ 𝑥 ) ∈ 𝐵 ) |
74 |
4 21 3
|
cntzel |
⊢ ( ( 𝑆 ⊆ 𝐵 ∧ ( ( invg ‘ 𝑅 ) ‘ 𝑥 ) ∈ 𝐵 ) → ( ( ( invg ‘ 𝑅 ) ‘ 𝑥 ) ∈ ( 𝑍 ‘ 𝑆 ) ↔ ∀ 𝑧 ∈ 𝑆 ( ( ( invg ‘ 𝑅 ) ‘ 𝑥 ) ( .r ‘ 𝑅 ) 𝑧 ) = ( 𝑧 ( .r ‘ 𝑅 ) ( ( invg ‘ 𝑅 ) ‘ 𝑥 ) ) ) ) |
75 |
63 73 74
|
syl2anc |
⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ) → ( ( ( invg ‘ 𝑅 ) ‘ 𝑥 ) ∈ ( 𝑍 ‘ 𝑆 ) ↔ ∀ 𝑧 ∈ 𝑆 ( ( ( invg ‘ 𝑅 ) ‘ 𝑥 ) ( .r ‘ 𝑅 ) 𝑧 ) = ( 𝑧 ( .r ‘ 𝑅 ) ( ( invg ‘ 𝑅 ) ‘ 𝑥 ) ) ) ) |
76 |
68 75
|
mpbird |
⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ) → ( ( invg ‘ 𝑅 ) ‘ 𝑥 ) ∈ ( 𝑍 ‘ 𝑆 ) ) |
77 |
56 76
|
jca |
⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ) → ( ∀ 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ∈ ( 𝑍 ‘ 𝑆 ) ∧ ( ( invg ‘ 𝑅 ) ‘ 𝑥 ) ∈ ( 𝑍 ‘ 𝑆 ) ) ) |
78 |
77
|
ralrimiva |
⊢ ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) → ∀ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ( ∀ 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ∈ ( 𝑍 ‘ 𝑆 ) ∧ ( ( invg ‘ 𝑅 ) ‘ 𝑥 ) ∈ ( 𝑍 ‘ 𝑆 ) ) ) |
79 |
69
|
adantr |
⊢ ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) → 𝑅 ∈ Grp ) |
80 |
1 38 59
|
issubg2 |
⊢ ( 𝑅 ∈ Grp → ( ( 𝑍 ‘ 𝑆 ) ∈ ( SubGrp ‘ 𝑅 ) ↔ ( ( 𝑍 ‘ 𝑆 ) ⊆ 𝐵 ∧ ( 𝑍 ‘ 𝑆 ) ≠ ∅ ∧ ∀ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ( ∀ 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ∈ ( 𝑍 ‘ 𝑆 ) ∧ ( ( invg ‘ 𝑅 ) ‘ 𝑥 ) ∈ ( 𝑍 ‘ 𝑆 ) ) ) ) ) |
81 |
79 80
|
syl |
⊢ ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) → ( ( 𝑍 ‘ 𝑆 ) ∈ ( SubGrp ‘ 𝑅 ) ↔ ( ( 𝑍 ‘ 𝑆 ) ⊆ 𝐵 ∧ ( 𝑍 ‘ 𝑆 ) ≠ ∅ ∧ ∀ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ( ∀ 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ∈ ( 𝑍 ‘ 𝑆 ) ∧ ( ( invg ‘ 𝑅 ) ‘ 𝑥 ) ∈ ( 𝑍 ‘ 𝑆 ) ) ) ) ) |
82 |
6 25 78 81
|
mpbir3and |
⊢ ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) → ( 𝑍 ‘ 𝑆 ) ∈ ( SubGrp ‘ 𝑅 ) ) |
83 |
|
eqid |
⊢ ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 ) |
84 |
83
|
rngmgp |
⊢ ( 𝑅 ∈ Rng → ( mulGrp ‘ 𝑅 ) ∈ Smgrp ) |
85 |
83 1
|
mgpbas |
⊢ 𝐵 = ( Base ‘ ( mulGrp ‘ 𝑅 ) ) |
86 |
85
|
sseq2i |
⊢ ( 𝑆 ⊆ 𝐵 ↔ 𝑆 ⊆ ( Base ‘ ( mulGrp ‘ 𝑅 ) ) ) |
87 |
86
|
biimpi |
⊢ ( 𝑆 ⊆ 𝐵 → 𝑆 ⊆ ( Base ‘ ( mulGrp ‘ 𝑅 ) ) ) |
88 |
|
eqid |
⊢ ( Base ‘ ( mulGrp ‘ 𝑅 ) ) = ( Base ‘ ( mulGrp ‘ 𝑅 ) ) |
89 |
2
|
fveq2i |
⊢ ( Cntz ‘ 𝑀 ) = ( Cntz ‘ ( mulGrp ‘ 𝑅 ) ) |
90 |
3 89
|
eqtri |
⊢ 𝑍 = ( Cntz ‘ ( mulGrp ‘ 𝑅 ) ) |
91 |
|
eqid |
⊢ ( 𝑍 ‘ 𝑆 ) = ( 𝑍 ‘ 𝑆 ) |
92 |
88 90 91
|
cntzsgrpcl |
⊢ ( ( ( mulGrp ‘ 𝑅 ) ∈ Smgrp ∧ 𝑆 ⊆ ( Base ‘ ( mulGrp ‘ 𝑅 ) ) ) → ∀ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∀ 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ( 𝑥 ( +g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑦 ) ∈ ( 𝑍 ‘ 𝑆 ) ) |
93 |
84 87 92
|
syl2an |
⊢ ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) → ∀ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∀ 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ( 𝑥 ( +g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑦 ) ∈ ( 𝑍 ‘ 𝑆 ) ) |
94 |
83 10
|
mgpplusg |
⊢ ( .r ‘ 𝑅 ) = ( +g ‘ ( mulGrp ‘ 𝑅 ) ) |
95 |
94
|
oveqi |
⊢ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = ( 𝑥 ( +g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑦 ) |
96 |
95
|
eleq1i |
⊢ ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ ( 𝑍 ‘ 𝑆 ) ↔ ( 𝑥 ( +g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑦 ) ∈ ( 𝑍 ‘ 𝑆 ) ) |
97 |
96
|
2ralbii |
⊢ ( ∀ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∀ 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ ( 𝑍 ‘ 𝑆 ) ↔ ∀ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∀ 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ( 𝑥 ( +g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑦 ) ∈ ( 𝑍 ‘ 𝑆 ) ) |
98 |
93 97
|
sylibr |
⊢ ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) → ∀ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∀ 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ ( 𝑍 ‘ 𝑆 ) ) |
99 |
1 10
|
issubrng2 |
⊢ ( 𝑅 ∈ Rng → ( ( 𝑍 ‘ 𝑆 ) ∈ ( SubRng ‘ 𝑅 ) ↔ ( ( 𝑍 ‘ 𝑆 ) ∈ ( SubGrp ‘ 𝑅 ) ∧ ∀ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∀ 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ ( 𝑍 ‘ 𝑆 ) ) ) ) |
100 |
99
|
adantr |
⊢ ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) → ( ( 𝑍 ‘ 𝑆 ) ∈ ( SubRng ‘ 𝑅 ) ↔ ( ( 𝑍 ‘ 𝑆 ) ∈ ( SubGrp ‘ 𝑅 ) ∧ ∀ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∀ 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ ( 𝑍 ‘ 𝑆 ) ) ) ) |
101 |
82 98 100
|
mpbir2and |
⊢ ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) → ( 𝑍 ‘ 𝑆 ) ∈ ( SubRng ‘ 𝑅 ) ) |