| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							cntzsubrng.b | 
							⊢ 𝐵  =  ( Base ‘ 𝑅 )  | 
						
						
							| 2 | 
							
								
							 | 
							cntzsubrng.m | 
							⊢ 𝑀  =  ( mulGrp ‘ 𝑅 )  | 
						
						
							| 3 | 
							
								
							 | 
							cntzsubrng.z | 
							⊢ 𝑍  =  ( Cntz ‘ 𝑀 )  | 
						
						
							| 4 | 
							
								2 1
							 | 
							mgpbas | 
							⊢ 𝐵  =  ( Base ‘ 𝑀 )  | 
						
						
							| 5 | 
							
								4 3
							 | 
							cntzssv | 
							⊢ ( 𝑍 ‘ 𝑆 )  ⊆  𝐵  | 
						
						
							| 6 | 
							
								5
							 | 
							a1i | 
							⊢ ( ( 𝑅  ∈  Rng  ∧  𝑆  ⊆  𝐵 )  →  ( 𝑍 ‘ 𝑆 )  ⊆  𝐵 )  | 
						
						
							| 7 | 
							
								
							 | 
							simpll | 
							⊢ ( ( ( 𝑅  ∈  Rng  ∧  𝑆  ⊆  𝐵 )  ∧  𝑧  ∈  𝑆 )  →  𝑅  ∈  Rng )  | 
						
						
							| 8 | 
							
								
							 | 
							ssel2 | 
							⊢ ( ( 𝑆  ⊆  𝐵  ∧  𝑧  ∈  𝑆 )  →  𝑧  ∈  𝐵 )  | 
						
						
							| 9 | 
							
								8
							 | 
							adantll | 
							⊢ ( ( ( 𝑅  ∈  Rng  ∧  𝑆  ⊆  𝐵 )  ∧  𝑧  ∈  𝑆 )  →  𝑧  ∈  𝐵 )  | 
						
						
							| 10 | 
							
								
							 | 
							eqid | 
							⊢ ( .r ‘ 𝑅 )  =  ( .r ‘ 𝑅 )  | 
						
						
							| 11 | 
							
								
							 | 
							eqid | 
							⊢ ( 0g ‘ 𝑅 )  =  ( 0g ‘ 𝑅 )  | 
						
						
							| 12 | 
							
								1 10 11
							 | 
							rnglz | 
							⊢ ( ( 𝑅  ∈  Rng  ∧  𝑧  ∈  𝐵 )  →  ( ( 0g ‘ 𝑅 ) ( .r ‘ 𝑅 ) 𝑧 )  =  ( 0g ‘ 𝑅 ) )  | 
						
						
							| 13 | 
							
								7 9 12
							 | 
							syl2anc | 
							⊢ ( ( ( 𝑅  ∈  Rng  ∧  𝑆  ⊆  𝐵 )  ∧  𝑧  ∈  𝑆 )  →  ( ( 0g ‘ 𝑅 ) ( .r ‘ 𝑅 ) 𝑧 )  =  ( 0g ‘ 𝑅 ) )  | 
						
						
							| 14 | 
							
								1 10 11
							 | 
							rngrz | 
							⊢ ( ( 𝑅  ∈  Rng  ∧  𝑧  ∈  𝐵 )  →  ( 𝑧 ( .r ‘ 𝑅 ) ( 0g ‘ 𝑅 ) )  =  ( 0g ‘ 𝑅 ) )  | 
						
						
							| 15 | 
							
								7 9 14
							 | 
							syl2anc | 
							⊢ ( ( ( 𝑅  ∈  Rng  ∧  𝑆  ⊆  𝐵 )  ∧  𝑧  ∈  𝑆 )  →  ( 𝑧 ( .r ‘ 𝑅 ) ( 0g ‘ 𝑅 ) )  =  ( 0g ‘ 𝑅 ) )  | 
						
						
							| 16 | 
							
								13 15
							 | 
							eqtr4d | 
							⊢ ( ( ( 𝑅  ∈  Rng  ∧  𝑆  ⊆  𝐵 )  ∧  𝑧  ∈  𝑆 )  →  ( ( 0g ‘ 𝑅 ) ( .r ‘ 𝑅 ) 𝑧 )  =  ( 𝑧 ( .r ‘ 𝑅 ) ( 0g ‘ 𝑅 ) ) )  | 
						
						
							| 17 | 
							
								16
							 | 
							ralrimiva | 
							⊢ ( ( 𝑅  ∈  Rng  ∧  𝑆  ⊆  𝐵 )  →  ∀ 𝑧  ∈  𝑆 ( ( 0g ‘ 𝑅 ) ( .r ‘ 𝑅 ) 𝑧 )  =  ( 𝑧 ( .r ‘ 𝑅 ) ( 0g ‘ 𝑅 ) ) )  | 
						
						
							| 18 | 
							
								
							 | 
							simpr | 
							⊢ ( ( 𝑅  ∈  Rng  ∧  𝑆  ⊆  𝐵 )  →  𝑆  ⊆  𝐵 )  | 
						
						
							| 19 | 
							
								1 11
							 | 
							rng0cl | 
							⊢ ( 𝑅  ∈  Rng  →  ( 0g ‘ 𝑅 )  ∈  𝐵 )  | 
						
						
							| 20 | 
							
								19
							 | 
							adantr | 
							⊢ ( ( 𝑅  ∈  Rng  ∧  𝑆  ⊆  𝐵 )  →  ( 0g ‘ 𝑅 )  ∈  𝐵 )  | 
						
						
							| 21 | 
							
								2 10
							 | 
							mgpplusg | 
							⊢ ( .r ‘ 𝑅 )  =  ( +g ‘ 𝑀 )  | 
						
						
							| 22 | 
							
								4 21 3
							 | 
							cntzel | 
							⊢ ( ( 𝑆  ⊆  𝐵  ∧  ( 0g ‘ 𝑅 )  ∈  𝐵 )  →  ( ( 0g ‘ 𝑅 )  ∈  ( 𝑍 ‘ 𝑆 )  ↔  ∀ 𝑧  ∈  𝑆 ( ( 0g ‘ 𝑅 ) ( .r ‘ 𝑅 ) 𝑧 )  =  ( 𝑧 ( .r ‘ 𝑅 ) ( 0g ‘ 𝑅 ) ) ) )  | 
						
						
							| 23 | 
							
								18 20 22
							 | 
							syl2anc | 
							⊢ ( ( 𝑅  ∈  Rng  ∧  𝑆  ⊆  𝐵 )  →  ( ( 0g ‘ 𝑅 )  ∈  ( 𝑍 ‘ 𝑆 )  ↔  ∀ 𝑧  ∈  𝑆 ( ( 0g ‘ 𝑅 ) ( .r ‘ 𝑅 ) 𝑧 )  =  ( 𝑧 ( .r ‘ 𝑅 ) ( 0g ‘ 𝑅 ) ) ) )  | 
						
						
							| 24 | 
							
								17 23
							 | 
							mpbird | 
							⊢ ( ( 𝑅  ∈  Rng  ∧  𝑆  ⊆  𝐵 )  →  ( 0g ‘ 𝑅 )  ∈  ( 𝑍 ‘ 𝑆 ) )  | 
						
						
							| 25 | 
							
								24
							 | 
							ne0d | 
							⊢ ( ( 𝑅  ∈  Rng  ∧  𝑆  ⊆  𝐵 )  →  ( 𝑍 ‘ 𝑆 )  ≠  ∅ )  | 
						
						
							| 26 | 
							
								
							 | 
							simpl2 | 
							⊢ ( ( ( ( 𝑅  ∈  Rng  ∧  𝑆  ⊆  𝐵 )  ∧  𝑥  ∈  ( 𝑍 ‘ 𝑆 )  ∧  𝑦  ∈  ( 𝑍 ‘ 𝑆 ) )  ∧  𝑧  ∈  𝑆 )  →  𝑥  ∈  ( 𝑍 ‘ 𝑆 ) )  | 
						
						
							| 27 | 
							
								21 3
							 | 
							cntzi | 
							⊢ ( ( 𝑥  ∈  ( 𝑍 ‘ 𝑆 )  ∧  𝑧  ∈  𝑆 )  →  ( 𝑥 ( .r ‘ 𝑅 ) 𝑧 )  =  ( 𝑧 ( .r ‘ 𝑅 ) 𝑥 ) )  | 
						
						
							| 28 | 
							
								26 27
							 | 
							sylancom | 
							⊢ ( ( ( ( 𝑅  ∈  Rng  ∧  𝑆  ⊆  𝐵 )  ∧  𝑥  ∈  ( 𝑍 ‘ 𝑆 )  ∧  𝑦  ∈  ( 𝑍 ‘ 𝑆 ) )  ∧  𝑧  ∈  𝑆 )  →  ( 𝑥 ( .r ‘ 𝑅 ) 𝑧 )  =  ( 𝑧 ( .r ‘ 𝑅 ) 𝑥 ) )  | 
						
						
							| 29 | 
							
								
							 | 
							simpl3 | 
							⊢ ( ( ( ( 𝑅  ∈  Rng  ∧  𝑆  ⊆  𝐵 )  ∧  𝑥  ∈  ( 𝑍 ‘ 𝑆 )  ∧  𝑦  ∈  ( 𝑍 ‘ 𝑆 ) )  ∧  𝑧  ∈  𝑆 )  →  𝑦  ∈  ( 𝑍 ‘ 𝑆 ) )  | 
						
						
							| 30 | 
							
								21 3
							 | 
							cntzi | 
							⊢ ( ( 𝑦  ∈  ( 𝑍 ‘ 𝑆 )  ∧  𝑧  ∈  𝑆 )  →  ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 )  =  ( 𝑧 ( .r ‘ 𝑅 ) 𝑦 ) )  | 
						
						
							| 31 | 
							
								29 30
							 | 
							sylancom | 
							⊢ ( ( ( ( 𝑅  ∈  Rng  ∧  𝑆  ⊆  𝐵 )  ∧  𝑥  ∈  ( 𝑍 ‘ 𝑆 )  ∧  𝑦  ∈  ( 𝑍 ‘ 𝑆 ) )  ∧  𝑧  ∈  𝑆 )  →  ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 )  =  ( 𝑧 ( .r ‘ 𝑅 ) 𝑦 ) )  | 
						
						
							| 32 | 
							
								28 31
							 | 
							oveq12d | 
							⊢ ( ( ( ( 𝑅  ∈  Rng  ∧  𝑆  ⊆  𝐵 )  ∧  𝑥  ∈  ( 𝑍 ‘ 𝑆 )  ∧  𝑦  ∈  ( 𝑍 ‘ 𝑆 ) )  ∧  𝑧  ∈  𝑆 )  →  ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑧 ) ( +g ‘ 𝑅 ) ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) )  =  ( ( 𝑧 ( .r ‘ 𝑅 ) 𝑥 ) ( +g ‘ 𝑅 ) ( 𝑧 ( .r ‘ 𝑅 ) 𝑦 ) ) )  | 
						
						
							| 33 | 
							
								
							 | 
							simpl1l | 
							⊢ ( ( ( ( 𝑅  ∈  Rng  ∧  𝑆  ⊆  𝐵 )  ∧  𝑥  ∈  ( 𝑍 ‘ 𝑆 )  ∧  𝑦  ∈  ( 𝑍 ‘ 𝑆 ) )  ∧  𝑧  ∈  𝑆 )  →  𝑅  ∈  Rng )  | 
						
						
							| 34 | 
							
								5 26
							 | 
							sselid | 
							⊢ ( ( ( ( 𝑅  ∈  Rng  ∧  𝑆  ⊆  𝐵 )  ∧  𝑥  ∈  ( 𝑍 ‘ 𝑆 )  ∧  𝑦  ∈  ( 𝑍 ‘ 𝑆 ) )  ∧  𝑧  ∈  𝑆 )  →  𝑥  ∈  𝐵 )  | 
						
						
							| 35 | 
							
								5 29
							 | 
							sselid | 
							⊢ ( ( ( ( 𝑅  ∈  Rng  ∧  𝑆  ⊆  𝐵 )  ∧  𝑥  ∈  ( 𝑍 ‘ 𝑆 )  ∧  𝑦  ∈  ( 𝑍 ‘ 𝑆 ) )  ∧  𝑧  ∈  𝑆 )  →  𝑦  ∈  𝐵 )  | 
						
						
							| 36 | 
							
								
							 | 
							simp1r | 
							⊢ ( ( ( 𝑅  ∈  Rng  ∧  𝑆  ⊆  𝐵 )  ∧  𝑥  ∈  ( 𝑍 ‘ 𝑆 )  ∧  𝑦  ∈  ( 𝑍 ‘ 𝑆 ) )  →  𝑆  ⊆  𝐵 )  | 
						
						
							| 37 | 
							
								36
							 | 
							sselda | 
							⊢ ( ( ( ( 𝑅  ∈  Rng  ∧  𝑆  ⊆  𝐵 )  ∧  𝑥  ∈  ( 𝑍 ‘ 𝑆 )  ∧  𝑦  ∈  ( 𝑍 ‘ 𝑆 ) )  ∧  𝑧  ∈  𝑆 )  →  𝑧  ∈  𝐵 )  | 
						
						
							| 38 | 
							
								
							 | 
							eqid | 
							⊢ ( +g ‘ 𝑅 )  =  ( +g ‘ 𝑅 )  | 
						
						
							| 39 | 
							
								1 38 10
							 | 
							rngdir | 
							⊢ ( ( 𝑅  ∈  Rng  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) )  →  ( ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ( .r ‘ 𝑅 ) 𝑧 )  =  ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑧 ) ( +g ‘ 𝑅 ) ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) ) )  | 
						
						
							| 40 | 
							
								33 34 35 37 39
							 | 
							syl13anc | 
							⊢ ( ( ( ( 𝑅  ∈  Rng  ∧  𝑆  ⊆  𝐵 )  ∧  𝑥  ∈  ( 𝑍 ‘ 𝑆 )  ∧  𝑦  ∈  ( 𝑍 ‘ 𝑆 ) )  ∧  𝑧  ∈  𝑆 )  →  ( ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ( .r ‘ 𝑅 ) 𝑧 )  =  ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑧 ) ( +g ‘ 𝑅 ) ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) ) )  | 
						
						
							| 41 | 
							
								1 38 10
							 | 
							rngdi | 
							⊢ ( ( 𝑅  ∈  Rng  ∧  ( 𝑧  ∈  𝐵  ∧  𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝑧 ( .r ‘ 𝑅 ) ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) )  =  ( ( 𝑧 ( .r ‘ 𝑅 ) 𝑥 ) ( +g ‘ 𝑅 ) ( 𝑧 ( .r ‘ 𝑅 ) 𝑦 ) ) )  | 
						
						
							| 42 | 
							
								33 37 34 35 41
							 | 
							syl13anc | 
							⊢ ( ( ( ( 𝑅  ∈  Rng  ∧  𝑆  ⊆  𝐵 )  ∧  𝑥  ∈  ( 𝑍 ‘ 𝑆 )  ∧  𝑦  ∈  ( 𝑍 ‘ 𝑆 ) )  ∧  𝑧  ∈  𝑆 )  →  ( 𝑧 ( .r ‘ 𝑅 ) ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) )  =  ( ( 𝑧 ( .r ‘ 𝑅 ) 𝑥 ) ( +g ‘ 𝑅 ) ( 𝑧 ( .r ‘ 𝑅 ) 𝑦 ) ) )  | 
						
						
							| 43 | 
							
								32 40 42
							 | 
							3eqtr4d | 
							⊢ ( ( ( ( 𝑅  ∈  Rng  ∧  𝑆  ⊆  𝐵 )  ∧  𝑥  ∈  ( 𝑍 ‘ 𝑆 )  ∧  𝑦  ∈  ( 𝑍 ‘ 𝑆 ) )  ∧  𝑧  ∈  𝑆 )  →  ( ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ( .r ‘ 𝑅 ) 𝑧 )  =  ( 𝑧 ( .r ‘ 𝑅 ) ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ) )  | 
						
						
							| 44 | 
							
								43
							 | 
							ralrimiva | 
							⊢ ( ( ( 𝑅  ∈  Rng  ∧  𝑆  ⊆  𝐵 )  ∧  𝑥  ∈  ( 𝑍 ‘ 𝑆 )  ∧  𝑦  ∈  ( 𝑍 ‘ 𝑆 ) )  →  ∀ 𝑧  ∈  𝑆 ( ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ( .r ‘ 𝑅 ) 𝑧 )  =  ( 𝑧 ( .r ‘ 𝑅 ) ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ) )  | 
						
						
							| 45 | 
							
								
							 | 
							simp1l | 
							⊢ ( ( ( 𝑅  ∈  Rng  ∧  𝑆  ⊆  𝐵 )  ∧  𝑥  ∈  ( 𝑍 ‘ 𝑆 )  ∧  𝑦  ∈  ( 𝑍 ‘ 𝑆 ) )  →  𝑅  ∈  Rng )  | 
						
						
							| 46 | 
							
								
							 | 
							simp2 | 
							⊢ ( ( ( 𝑅  ∈  Rng  ∧  𝑆  ⊆  𝐵 )  ∧  𝑥  ∈  ( 𝑍 ‘ 𝑆 )  ∧  𝑦  ∈  ( 𝑍 ‘ 𝑆 ) )  →  𝑥  ∈  ( 𝑍 ‘ 𝑆 ) )  | 
						
						
							| 47 | 
							
								5 46
							 | 
							sselid | 
							⊢ ( ( ( 𝑅  ∈  Rng  ∧  𝑆  ⊆  𝐵 )  ∧  𝑥  ∈  ( 𝑍 ‘ 𝑆 )  ∧  𝑦  ∈  ( 𝑍 ‘ 𝑆 ) )  →  𝑥  ∈  𝐵 )  | 
						
						
							| 48 | 
							
								
							 | 
							simp3 | 
							⊢ ( ( ( 𝑅  ∈  Rng  ∧  𝑆  ⊆  𝐵 )  ∧  𝑥  ∈  ( 𝑍 ‘ 𝑆 )  ∧  𝑦  ∈  ( 𝑍 ‘ 𝑆 ) )  →  𝑦  ∈  ( 𝑍 ‘ 𝑆 ) )  | 
						
						
							| 49 | 
							
								5 48
							 | 
							sselid | 
							⊢ ( ( ( 𝑅  ∈  Rng  ∧  𝑆  ⊆  𝐵 )  ∧  𝑥  ∈  ( 𝑍 ‘ 𝑆 )  ∧  𝑦  ∈  ( 𝑍 ‘ 𝑆 ) )  →  𝑦  ∈  𝐵 )  | 
						
						
							| 50 | 
							
								1 38
							 | 
							rngacl | 
							⊢ ( ( 𝑅  ∈  Rng  ∧  𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  →  ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 )  ∈  𝐵 )  | 
						
						
							| 51 | 
							
								45 47 49 50
							 | 
							syl3anc | 
							⊢ ( ( ( 𝑅  ∈  Rng  ∧  𝑆  ⊆  𝐵 )  ∧  𝑥  ∈  ( 𝑍 ‘ 𝑆 )  ∧  𝑦  ∈  ( 𝑍 ‘ 𝑆 ) )  →  ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 )  ∈  𝐵 )  | 
						
						
							| 52 | 
							
								4 21 3
							 | 
							cntzel | 
							⊢ ( ( 𝑆  ⊆  𝐵  ∧  ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 )  ∈  𝐵 )  →  ( ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 )  ∈  ( 𝑍 ‘ 𝑆 )  ↔  ∀ 𝑧  ∈  𝑆 ( ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ( .r ‘ 𝑅 ) 𝑧 )  =  ( 𝑧 ( .r ‘ 𝑅 ) ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ) ) )  | 
						
						
							| 53 | 
							
								36 51 52
							 | 
							syl2anc | 
							⊢ ( ( ( 𝑅  ∈  Rng  ∧  𝑆  ⊆  𝐵 )  ∧  𝑥  ∈  ( 𝑍 ‘ 𝑆 )  ∧  𝑦  ∈  ( 𝑍 ‘ 𝑆 ) )  →  ( ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 )  ∈  ( 𝑍 ‘ 𝑆 )  ↔  ∀ 𝑧  ∈  𝑆 ( ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ( .r ‘ 𝑅 ) 𝑧 )  =  ( 𝑧 ( .r ‘ 𝑅 ) ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ) ) )  | 
						
						
							| 54 | 
							
								44 53
							 | 
							mpbird | 
							⊢ ( ( ( 𝑅  ∈  Rng  ∧  𝑆  ⊆  𝐵 )  ∧  𝑥  ∈  ( 𝑍 ‘ 𝑆 )  ∧  𝑦  ∈  ( 𝑍 ‘ 𝑆 ) )  →  ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 )  ∈  ( 𝑍 ‘ 𝑆 ) )  | 
						
						
							| 55 | 
							
								54
							 | 
							3expa | 
							⊢ ( ( ( ( 𝑅  ∈  Rng  ∧  𝑆  ⊆  𝐵 )  ∧  𝑥  ∈  ( 𝑍 ‘ 𝑆 ) )  ∧  𝑦  ∈  ( 𝑍 ‘ 𝑆 ) )  →  ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 )  ∈  ( 𝑍 ‘ 𝑆 ) )  | 
						
						
							| 56 | 
							
								55
							 | 
							ralrimiva | 
							⊢ ( ( ( 𝑅  ∈  Rng  ∧  𝑆  ⊆  𝐵 )  ∧  𝑥  ∈  ( 𝑍 ‘ 𝑆 ) )  →  ∀ 𝑦  ∈  ( 𝑍 ‘ 𝑆 ) ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 )  ∈  ( 𝑍 ‘ 𝑆 ) )  | 
						
						
							| 57 | 
							
								27
							 | 
							adantll | 
							⊢ ( ( ( ( 𝑅  ∈  Rng  ∧  𝑆  ⊆  𝐵 )  ∧  𝑥  ∈  ( 𝑍 ‘ 𝑆 ) )  ∧  𝑧  ∈  𝑆 )  →  ( 𝑥 ( .r ‘ 𝑅 ) 𝑧 )  =  ( 𝑧 ( .r ‘ 𝑅 ) 𝑥 ) )  | 
						
						
							| 58 | 
							
								57
							 | 
							fveq2d | 
							⊢ ( ( ( ( 𝑅  ∈  Rng  ∧  𝑆  ⊆  𝐵 )  ∧  𝑥  ∈  ( 𝑍 ‘ 𝑆 ) )  ∧  𝑧  ∈  𝑆 )  →  ( ( invg ‘ 𝑅 ) ‘ ( 𝑥 ( .r ‘ 𝑅 ) 𝑧 ) )  =  ( ( invg ‘ 𝑅 ) ‘ ( 𝑧 ( .r ‘ 𝑅 ) 𝑥 ) ) )  | 
						
						
							| 59 | 
							
								
							 | 
							eqid | 
							⊢ ( invg ‘ 𝑅 )  =  ( invg ‘ 𝑅 )  | 
						
						
							| 60 | 
							
								
							 | 
							simplll | 
							⊢ ( ( ( ( 𝑅  ∈  Rng  ∧  𝑆  ⊆  𝐵 )  ∧  𝑥  ∈  ( 𝑍 ‘ 𝑆 ) )  ∧  𝑧  ∈  𝑆 )  →  𝑅  ∈  Rng )  | 
						
						
							| 61 | 
							
								
							 | 
							simplr | 
							⊢ ( ( ( ( 𝑅  ∈  Rng  ∧  𝑆  ⊆  𝐵 )  ∧  𝑥  ∈  ( 𝑍 ‘ 𝑆 ) )  ∧  𝑧  ∈  𝑆 )  →  𝑥  ∈  ( 𝑍 ‘ 𝑆 ) )  | 
						
						
							| 62 | 
							
								5 61
							 | 
							sselid | 
							⊢ ( ( ( ( 𝑅  ∈  Rng  ∧  𝑆  ⊆  𝐵 )  ∧  𝑥  ∈  ( 𝑍 ‘ 𝑆 ) )  ∧  𝑧  ∈  𝑆 )  →  𝑥  ∈  𝐵 )  | 
						
						
							| 63 | 
							
								
							 | 
							simplr | 
							⊢ ( ( ( 𝑅  ∈  Rng  ∧  𝑆  ⊆  𝐵 )  ∧  𝑥  ∈  ( 𝑍 ‘ 𝑆 ) )  →  𝑆  ⊆  𝐵 )  | 
						
						
							| 64 | 
							
								63
							 | 
							sselda | 
							⊢ ( ( ( ( 𝑅  ∈  Rng  ∧  𝑆  ⊆  𝐵 )  ∧  𝑥  ∈  ( 𝑍 ‘ 𝑆 ) )  ∧  𝑧  ∈  𝑆 )  →  𝑧  ∈  𝐵 )  | 
						
						
							| 65 | 
							
								1 10 59 60 62 64
							 | 
							rngmneg1 | 
							⊢ ( ( ( ( 𝑅  ∈  Rng  ∧  𝑆  ⊆  𝐵 )  ∧  𝑥  ∈  ( 𝑍 ‘ 𝑆 ) )  ∧  𝑧  ∈  𝑆 )  →  ( ( ( invg ‘ 𝑅 ) ‘ 𝑥 ) ( .r ‘ 𝑅 ) 𝑧 )  =  ( ( invg ‘ 𝑅 ) ‘ ( 𝑥 ( .r ‘ 𝑅 ) 𝑧 ) ) )  | 
						
						
							| 66 | 
							
								1 10 59 60 64 62
							 | 
							rngmneg2 | 
							⊢ ( ( ( ( 𝑅  ∈  Rng  ∧  𝑆  ⊆  𝐵 )  ∧  𝑥  ∈  ( 𝑍 ‘ 𝑆 ) )  ∧  𝑧  ∈  𝑆 )  →  ( 𝑧 ( .r ‘ 𝑅 ) ( ( invg ‘ 𝑅 ) ‘ 𝑥 ) )  =  ( ( invg ‘ 𝑅 ) ‘ ( 𝑧 ( .r ‘ 𝑅 ) 𝑥 ) ) )  | 
						
						
							| 67 | 
							
								58 65 66
							 | 
							3eqtr4d | 
							⊢ ( ( ( ( 𝑅  ∈  Rng  ∧  𝑆  ⊆  𝐵 )  ∧  𝑥  ∈  ( 𝑍 ‘ 𝑆 ) )  ∧  𝑧  ∈  𝑆 )  →  ( ( ( invg ‘ 𝑅 ) ‘ 𝑥 ) ( .r ‘ 𝑅 ) 𝑧 )  =  ( 𝑧 ( .r ‘ 𝑅 ) ( ( invg ‘ 𝑅 ) ‘ 𝑥 ) ) )  | 
						
						
							| 68 | 
							
								67
							 | 
							ralrimiva | 
							⊢ ( ( ( 𝑅  ∈  Rng  ∧  𝑆  ⊆  𝐵 )  ∧  𝑥  ∈  ( 𝑍 ‘ 𝑆 ) )  →  ∀ 𝑧  ∈  𝑆 ( ( ( invg ‘ 𝑅 ) ‘ 𝑥 ) ( .r ‘ 𝑅 ) 𝑧 )  =  ( 𝑧 ( .r ‘ 𝑅 ) ( ( invg ‘ 𝑅 ) ‘ 𝑥 ) ) )  | 
						
						
							| 69 | 
							
								
							 | 
							rnggrp | 
							⊢ ( 𝑅  ∈  Rng  →  𝑅  ∈  Grp )  | 
						
						
							| 70 | 
							
								69
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝑅  ∈  Rng  ∧  𝑆  ⊆  𝐵 )  ∧  𝑥  ∈  ( 𝑍 ‘ 𝑆 ) )  →  𝑅  ∈  Grp )  | 
						
						
							| 71 | 
							
								
							 | 
							simpr | 
							⊢ ( ( ( 𝑅  ∈  Rng  ∧  𝑆  ⊆  𝐵 )  ∧  𝑥  ∈  ( 𝑍 ‘ 𝑆 ) )  →  𝑥  ∈  ( 𝑍 ‘ 𝑆 ) )  | 
						
						
							| 72 | 
							
								5 71
							 | 
							sselid | 
							⊢ ( ( ( 𝑅  ∈  Rng  ∧  𝑆  ⊆  𝐵 )  ∧  𝑥  ∈  ( 𝑍 ‘ 𝑆 ) )  →  𝑥  ∈  𝐵 )  | 
						
						
							| 73 | 
							
								1 59 70 72
							 | 
							grpinvcld | 
							⊢ ( ( ( 𝑅  ∈  Rng  ∧  𝑆  ⊆  𝐵 )  ∧  𝑥  ∈  ( 𝑍 ‘ 𝑆 ) )  →  ( ( invg ‘ 𝑅 ) ‘ 𝑥 )  ∈  𝐵 )  | 
						
						
							| 74 | 
							
								4 21 3
							 | 
							cntzel | 
							⊢ ( ( 𝑆  ⊆  𝐵  ∧  ( ( invg ‘ 𝑅 ) ‘ 𝑥 )  ∈  𝐵 )  →  ( ( ( invg ‘ 𝑅 ) ‘ 𝑥 )  ∈  ( 𝑍 ‘ 𝑆 )  ↔  ∀ 𝑧  ∈  𝑆 ( ( ( invg ‘ 𝑅 ) ‘ 𝑥 ) ( .r ‘ 𝑅 ) 𝑧 )  =  ( 𝑧 ( .r ‘ 𝑅 ) ( ( invg ‘ 𝑅 ) ‘ 𝑥 ) ) ) )  | 
						
						
							| 75 | 
							
								63 73 74
							 | 
							syl2anc | 
							⊢ ( ( ( 𝑅  ∈  Rng  ∧  𝑆  ⊆  𝐵 )  ∧  𝑥  ∈  ( 𝑍 ‘ 𝑆 ) )  →  ( ( ( invg ‘ 𝑅 ) ‘ 𝑥 )  ∈  ( 𝑍 ‘ 𝑆 )  ↔  ∀ 𝑧  ∈  𝑆 ( ( ( invg ‘ 𝑅 ) ‘ 𝑥 ) ( .r ‘ 𝑅 ) 𝑧 )  =  ( 𝑧 ( .r ‘ 𝑅 ) ( ( invg ‘ 𝑅 ) ‘ 𝑥 ) ) ) )  | 
						
						
							| 76 | 
							
								68 75
							 | 
							mpbird | 
							⊢ ( ( ( 𝑅  ∈  Rng  ∧  𝑆  ⊆  𝐵 )  ∧  𝑥  ∈  ( 𝑍 ‘ 𝑆 ) )  →  ( ( invg ‘ 𝑅 ) ‘ 𝑥 )  ∈  ( 𝑍 ‘ 𝑆 ) )  | 
						
						
							| 77 | 
							
								56 76
							 | 
							jca | 
							⊢ ( ( ( 𝑅  ∈  Rng  ∧  𝑆  ⊆  𝐵 )  ∧  𝑥  ∈  ( 𝑍 ‘ 𝑆 ) )  →  ( ∀ 𝑦  ∈  ( 𝑍 ‘ 𝑆 ) ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 )  ∈  ( 𝑍 ‘ 𝑆 )  ∧  ( ( invg ‘ 𝑅 ) ‘ 𝑥 )  ∈  ( 𝑍 ‘ 𝑆 ) ) )  | 
						
						
							| 78 | 
							
								77
							 | 
							ralrimiva | 
							⊢ ( ( 𝑅  ∈  Rng  ∧  𝑆  ⊆  𝐵 )  →  ∀ 𝑥  ∈  ( 𝑍 ‘ 𝑆 ) ( ∀ 𝑦  ∈  ( 𝑍 ‘ 𝑆 ) ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 )  ∈  ( 𝑍 ‘ 𝑆 )  ∧  ( ( invg ‘ 𝑅 ) ‘ 𝑥 )  ∈  ( 𝑍 ‘ 𝑆 ) ) )  | 
						
						
							| 79 | 
							
								69
							 | 
							adantr | 
							⊢ ( ( 𝑅  ∈  Rng  ∧  𝑆  ⊆  𝐵 )  →  𝑅  ∈  Grp )  | 
						
						
							| 80 | 
							
								1 38 59
							 | 
							issubg2 | 
							⊢ ( 𝑅  ∈  Grp  →  ( ( 𝑍 ‘ 𝑆 )  ∈  ( SubGrp ‘ 𝑅 )  ↔  ( ( 𝑍 ‘ 𝑆 )  ⊆  𝐵  ∧  ( 𝑍 ‘ 𝑆 )  ≠  ∅  ∧  ∀ 𝑥  ∈  ( 𝑍 ‘ 𝑆 ) ( ∀ 𝑦  ∈  ( 𝑍 ‘ 𝑆 ) ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 )  ∈  ( 𝑍 ‘ 𝑆 )  ∧  ( ( invg ‘ 𝑅 ) ‘ 𝑥 )  ∈  ( 𝑍 ‘ 𝑆 ) ) ) ) )  | 
						
						
							| 81 | 
							
								79 80
							 | 
							syl | 
							⊢ ( ( 𝑅  ∈  Rng  ∧  𝑆  ⊆  𝐵 )  →  ( ( 𝑍 ‘ 𝑆 )  ∈  ( SubGrp ‘ 𝑅 )  ↔  ( ( 𝑍 ‘ 𝑆 )  ⊆  𝐵  ∧  ( 𝑍 ‘ 𝑆 )  ≠  ∅  ∧  ∀ 𝑥  ∈  ( 𝑍 ‘ 𝑆 ) ( ∀ 𝑦  ∈  ( 𝑍 ‘ 𝑆 ) ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 )  ∈  ( 𝑍 ‘ 𝑆 )  ∧  ( ( invg ‘ 𝑅 ) ‘ 𝑥 )  ∈  ( 𝑍 ‘ 𝑆 ) ) ) ) )  | 
						
						
							| 82 | 
							
								6 25 78 81
							 | 
							mpbir3and | 
							⊢ ( ( 𝑅  ∈  Rng  ∧  𝑆  ⊆  𝐵 )  →  ( 𝑍 ‘ 𝑆 )  ∈  ( SubGrp ‘ 𝑅 ) )  | 
						
						
							| 83 | 
							
								
							 | 
							eqid | 
							⊢ ( mulGrp ‘ 𝑅 )  =  ( mulGrp ‘ 𝑅 )  | 
						
						
							| 84 | 
							
								83
							 | 
							rngmgp | 
							⊢ ( 𝑅  ∈  Rng  →  ( mulGrp ‘ 𝑅 )  ∈  Smgrp )  | 
						
						
							| 85 | 
							
								83 1
							 | 
							mgpbas | 
							⊢ 𝐵  =  ( Base ‘ ( mulGrp ‘ 𝑅 ) )  | 
						
						
							| 86 | 
							
								85
							 | 
							sseq2i | 
							⊢ ( 𝑆  ⊆  𝐵  ↔  𝑆  ⊆  ( Base ‘ ( mulGrp ‘ 𝑅 ) ) )  | 
						
						
							| 87 | 
							
								86
							 | 
							biimpi | 
							⊢ ( 𝑆  ⊆  𝐵  →  𝑆  ⊆  ( Base ‘ ( mulGrp ‘ 𝑅 ) ) )  | 
						
						
							| 88 | 
							
								
							 | 
							eqid | 
							⊢ ( Base ‘ ( mulGrp ‘ 𝑅 ) )  =  ( Base ‘ ( mulGrp ‘ 𝑅 ) )  | 
						
						
							| 89 | 
							
								2
							 | 
							fveq2i | 
							⊢ ( Cntz ‘ 𝑀 )  =  ( Cntz ‘ ( mulGrp ‘ 𝑅 ) )  | 
						
						
							| 90 | 
							
								3 89
							 | 
							eqtri | 
							⊢ 𝑍  =  ( Cntz ‘ ( mulGrp ‘ 𝑅 ) )  | 
						
						
							| 91 | 
							
								
							 | 
							eqid | 
							⊢ ( 𝑍 ‘ 𝑆 )  =  ( 𝑍 ‘ 𝑆 )  | 
						
						
							| 92 | 
							
								88 90 91
							 | 
							cntzsgrpcl | 
							⊢ ( ( ( mulGrp ‘ 𝑅 )  ∈  Smgrp  ∧  𝑆  ⊆  ( Base ‘ ( mulGrp ‘ 𝑅 ) ) )  →  ∀ 𝑥  ∈  ( 𝑍 ‘ 𝑆 ) ∀ 𝑦  ∈  ( 𝑍 ‘ 𝑆 ) ( 𝑥 ( +g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑦 )  ∈  ( 𝑍 ‘ 𝑆 ) )  | 
						
						
							| 93 | 
							
								84 87 92
							 | 
							syl2an | 
							⊢ ( ( 𝑅  ∈  Rng  ∧  𝑆  ⊆  𝐵 )  →  ∀ 𝑥  ∈  ( 𝑍 ‘ 𝑆 ) ∀ 𝑦  ∈  ( 𝑍 ‘ 𝑆 ) ( 𝑥 ( +g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑦 )  ∈  ( 𝑍 ‘ 𝑆 ) )  | 
						
						
							| 94 | 
							
								83 10
							 | 
							mgpplusg | 
							⊢ ( .r ‘ 𝑅 )  =  ( +g ‘ ( mulGrp ‘ 𝑅 ) )  | 
						
						
							| 95 | 
							
								94
							 | 
							oveqi | 
							⊢ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 )  =  ( 𝑥 ( +g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑦 )  | 
						
						
							| 96 | 
							
								95
							 | 
							eleq1i | 
							⊢ ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 )  ∈  ( 𝑍 ‘ 𝑆 )  ↔  ( 𝑥 ( +g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑦 )  ∈  ( 𝑍 ‘ 𝑆 ) )  | 
						
						
							| 97 | 
							
								96
							 | 
							2ralbii | 
							⊢ ( ∀ 𝑥  ∈  ( 𝑍 ‘ 𝑆 ) ∀ 𝑦  ∈  ( 𝑍 ‘ 𝑆 ) ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 )  ∈  ( 𝑍 ‘ 𝑆 )  ↔  ∀ 𝑥  ∈  ( 𝑍 ‘ 𝑆 ) ∀ 𝑦  ∈  ( 𝑍 ‘ 𝑆 ) ( 𝑥 ( +g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑦 )  ∈  ( 𝑍 ‘ 𝑆 ) )  | 
						
						
							| 98 | 
							
								93 97
							 | 
							sylibr | 
							⊢ ( ( 𝑅  ∈  Rng  ∧  𝑆  ⊆  𝐵 )  →  ∀ 𝑥  ∈  ( 𝑍 ‘ 𝑆 ) ∀ 𝑦  ∈  ( 𝑍 ‘ 𝑆 ) ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 )  ∈  ( 𝑍 ‘ 𝑆 ) )  | 
						
						
							| 99 | 
							
								1 10
							 | 
							issubrng2 | 
							⊢ ( 𝑅  ∈  Rng  →  ( ( 𝑍 ‘ 𝑆 )  ∈  ( SubRng ‘ 𝑅 )  ↔  ( ( 𝑍 ‘ 𝑆 )  ∈  ( SubGrp ‘ 𝑅 )  ∧  ∀ 𝑥  ∈  ( 𝑍 ‘ 𝑆 ) ∀ 𝑦  ∈  ( 𝑍 ‘ 𝑆 ) ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 )  ∈  ( 𝑍 ‘ 𝑆 ) ) ) )  | 
						
						
							| 100 | 
							
								99
							 | 
							adantr | 
							⊢ ( ( 𝑅  ∈  Rng  ∧  𝑆  ⊆  𝐵 )  →  ( ( 𝑍 ‘ 𝑆 )  ∈  ( SubRng ‘ 𝑅 )  ↔  ( ( 𝑍 ‘ 𝑆 )  ∈  ( SubGrp ‘ 𝑅 )  ∧  ∀ 𝑥  ∈  ( 𝑍 ‘ 𝑆 ) ∀ 𝑦  ∈  ( 𝑍 ‘ 𝑆 ) ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 )  ∈  ( 𝑍 ‘ 𝑆 ) ) ) )  | 
						
						
							| 101 | 
							
								82 98 100
							 | 
							mpbir2and | 
							⊢ ( ( 𝑅  ∈  Rng  ∧  𝑆  ⊆  𝐵 )  →  ( 𝑍 ‘ 𝑆 )  ∈  ( SubRng ‘ 𝑅 ) )  |