| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cntzsubrng.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
| 2 |
|
cntzsubrng.m |
⊢ 𝑀 = ( mulGrp ‘ 𝑅 ) |
| 3 |
|
cntzsubrng.z |
⊢ 𝑍 = ( Cntz ‘ 𝑀 ) |
| 4 |
2 1
|
mgpbas |
⊢ 𝐵 = ( Base ‘ 𝑀 ) |
| 5 |
4 3
|
cntzssv |
⊢ ( 𝑍 ‘ 𝑆 ) ⊆ 𝐵 |
| 6 |
5
|
a1i |
⊢ ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) → ( 𝑍 ‘ 𝑆 ) ⊆ 𝐵 ) |
| 7 |
|
simpll |
⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑧 ∈ 𝑆 ) → 𝑅 ∈ Rng ) |
| 8 |
|
ssel2 |
⊢ ( ( 𝑆 ⊆ 𝐵 ∧ 𝑧 ∈ 𝑆 ) → 𝑧 ∈ 𝐵 ) |
| 9 |
8
|
adantll |
⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑧 ∈ 𝑆 ) → 𝑧 ∈ 𝐵 ) |
| 10 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
| 11 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
| 12 |
1 10 11
|
rnglz |
⊢ ( ( 𝑅 ∈ Rng ∧ 𝑧 ∈ 𝐵 ) → ( ( 0g ‘ 𝑅 ) ( .r ‘ 𝑅 ) 𝑧 ) = ( 0g ‘ 𝑅 ) ) |
| 13 |
7 9 12
|
syl2anc |
⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑧 ∈ 𝑆 ) → ( ( 0g ‘ 𝑅 ) ( .r ‘ 𝑅 ) 𝑧 ) = ( 0g ‘ 𝑅 ) ) |
| 14 |
1 10 11
|
rngrz |
⊢ ( ( 𝑅 ∈ Rng ∧ 𝑧 ∈ 𝐵 ) → ( 𝑧 ( .r ‘ 𝑅 ) ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) |
| 15 |
7 9 14
|
syl2anc |
⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑧 ∈ 𝑆 ) → ( 𝑧 ( .r ‘ 𝑅 ) ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) |
| 16 |
13 15
|
eqtr4d |
⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑧 ∈ 𝑆 ) → ( ( 0g ‘ 𝑅 ) ( .r ‘ 𝑅 ) 𝑧 ) = ( 𝑧 ( .r ‘ 𝑅 ) ( 0g ‘ 𝑅 ) ) ) |
| 17 |
16
|
ralrimiva |
⊢ ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) → ∀ 𝑧 ∈ 𝑆 ( ( 0g ‘ 𝑅 ) ( .r ‘ 𝑅 ) 𝑧 ) = ( 𝑧 ( .r ‘ 𝑅 ) ( 0g ‘ 𝑅 ) ) ) |
| 18 |
|
simpr |
⊢ ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) → 𝑆 ⊆ 𝐵 ) |
| 19 |
1 11
|
rng0cl |
⊢ ( 𝑅 ∈ Rng → ( 0g ‘ 𝑅 ) ∈ 𝐵 ) |
| 20 |
19
|
adantr |
⊢ ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) → ( 0g ‘ 𝑅 ) ∈ 𝐵 ) |
| 21 |
2 10
|
mgpplusg |
⊢ ( .r ‘ 𝑅 ) = ( +g ‘ 𝑀 ) |
| 22 |
4 21 3
|
cntzel |
⊢ ( ( 𝑆 ⊆ 𝐵 ∧ ( 0g ‘ 𝑅 ) ∈ 𝐵 ) → ( ( 0g ‘ 𝑅 ) ∈ ( 𝑍 ‘ 𝑆 ) ↔ ∀ 𝑧 ∈ 𝑆 ( ( 0g ‘ 𝑅 ) ( .r ‘ 𝑅 ) 𝑧 ) = ( 𝑧 ( .r ‘ 𝑅 ) ( 0g ‘ 𝑅 ) ) ) ) |
| 23 |
18 20 22
|
syl2anc |
⊢ ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) → ( ( 0g ‘ 𝑅 ) ∈ ( 𝑍 ‘ 𝑆 ) ↔ ∀ 𝑧 ∈ 𝑆 ( ( 0g ‘ 𝑅 ) ( .r ‘ 𝑅 ) 𝑧 ) = ( 𝑧 ( .r ‘ 𝑅 ) ( 0g ‘ 𝑅 ) ) ) ) |
| 24 |
17 23
|
mpbird |
⊢ ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) → ( 0g ‘ 𝑅 ) ∈ ( 𝑍 ‘ 𝑆 ) ) |
| 25 |
24
|
ne0d |
⊢ ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) → ( 𝑍 ‘ 𝑆 ) ≠ ∅ ) |
| 26 |
|
simpl2 |
⊢ ( ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ) ∧ 𝑧 ∈ 𝑆 ) → 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ) |
| 27 |
21 3
|
cntzi |
⊢ ( ( 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑧 ∈ 𝑆 ) → ( 𝑥 ( .r ‘ 𝑅 ) 𝑧 ) = ( 𝑧 ( .r ‘ 𝑅 ) 𝑥 ) ) |
| 28 |
26 27
|
sylancom |
⊢ ( ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ) ∧ 𝑧 ∈ 𝑆 ) → ( 𝑥 ( .r ‘ 𝑅 ) 𝑧 ) = ( 𝑧 ( .r ‘ 𝑅 ) 𝑥 ) ) |
| 29 |
|
simpl3 |
⊢ ( ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ) ∧ 𝑧 ∈ 𝑆 ) → 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ) |
| 30 |
21 3
|
cntzi |
⊢ ( ( 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑧 ∈ 𝑆 ) → ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) = ( 𝑧 ( .r ‘ 𝑅 ) 𝑦 ) ) |
| 31 |
29 30
|
sylancom |
⊢ ( ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ) ∧ 𝑧 ∈ 𝑆 ) → ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) = ( 𝑧 ( .r ‘ 𝑅 ) 𝑦 ) ) |
| 32 |
28 31
|
oveq12d |
⊢ ( ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ) ∧ 𝑧 ∈ 𝑆 ) → ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑧 ) ( +g ‘ 𝑅 ) ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) ) = ( ( 𝑧 ( .r ‘ 𝑅 ) 𝑥 ) ( +g ‘ 𝑅 ) ( 𝑧 ( .r ‘ 𝑅 ) 𝑦 ) ) ) |
| 33 |
|
simpl1l |
⊢ ( ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ) ∧ 𝑧 ∈ 𝑆 ) → 𝑅 ∈ Rng ) |
| 34 |
5 26
|
sselid |
⊢ ( ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ) ∧ 𝑧 ∈ 𝑆 ) → 𝑥 ∈ 𝐵 ) |
| 35 |
5 29
|
sselid |
⊢ ( ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ) ∧ 𝑧 ∈ 𝑆 ) → 𝑦 ∈ 𝐵 ) |
| 36 |
|
simp1r |
⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ) → 𝑆 ⊆ 𝐵 ) |
| 37 |
36
|
sselda |
⊢ ( ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ) ∧ 𝑧 ∈ 𝑆 ) → 𝑧 ∈ 𝐵 ) |
| 38 |
|
eqid |
⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) |
| 39 |
1 38 10
|
rngdir |
⊢ ( ( 𝑅 ∈ Rng ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ( .r ‘ 𝑅 ) 𝑧 ) = ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑧 ) ( +g ‘ 𝑅 ) ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) ) ) |
| 40 |
33 34 35 37 39
|
syl13anc |
⊢ ( ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ) ∧ 𝑧 ∈ 𝑆 ) → ( ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ( .r ‘ 𝑅 ) 𝑧 ) = ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑧 ) ( +g ‘ 𝑅 ) ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) ) ) |
| 41 |
1 38 10
|
rngdi |
⊢ ( ( 𝑅 ∈ Rng ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑧 ( .r ‘ 𝑅 ) ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ) = ( ( 𝑧 ( .r ‘ 𝑅 ) 𝑥 ) ( +g ‘ 𝑅 ) ( 𝑧 ( .r ‘ 𝑅 ) 𝑦 ) ) ) |
| 42 |
33 37 34 35 41
|
syl13anc |
⊢ ( ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ) ∧ 𝑧 ∈ 𝑆 ) → ( 𝑧 ( .r ‘ 𝑅 ) ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ) = ( ( 𝑧 ( .r ‘ 𝑅 ) 𝑥 ) ( +g ‘ 𝑅 ) ( 𝑧 ( .r ‘ 𝑅 ) 𝑦 ) ) ) |
| 43 |
32 40 42
|
3eqtr4d |
⊢ ( ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ) ∧ 𝑧 ∈ 𝑆 ) → ( ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ( .r ‘ 𝑅 ) 𝑧 ) = ( 𝑧 ( .r ‘ 𝑅 ) ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ) ) |
| 44 |
43
|
ralrimiva |
⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ) → ∀ 𝑧 ∈ 𝑆 ( ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ( .r ‘ 𝑅 ) 𝑧 ) = ( 𝑧 ( .r ‘ 𝑅 ) ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ) ) |
| 45 |
|
simp1l |
⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ) → 𝑅 ∈ Rng ) |
| 46 |
|
simp2 |
⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ) → 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ) |
| 47 |
5 46
|
sselid |
⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ) → 𝑥 ∈ 𝐵 ) |
| 48 |
|
simp3 |
⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ) → 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ) |
| 49 |
5 48
|
sselid |
⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ) → 𝑦 ∈ 𝐵 ) |
| 50 |
1 38
|
rngacl |
⊢ ( ( 𝑅 ∈ Rng ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ∈ 𝐵 ) |
| 51 |
45 47 49 50
|
syl3anc |
⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ) → ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ∈ 𝐵 ) |
| 52 |
4 21 3
|
cntzel |
⊢ ( ( 𝑆 ⊆ 𝐵 ∧ ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ∈ 𝐵 ) → ( ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ∈ ( 𝑍 ‘ 𝑆 ) ↔ ∀ 𝑧 ∈ 𝑆 ( ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ( .r ‘ 𝑅 ) 𝑧 ) = ( 𝑧 ( .r ‘ 𝑅 ) ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ) ) ) |
| 53 |
36 51 52
|
syl2anc |
⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ) → ( ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ∈ ( 𝑍 ‘ 𝑆 ) ↔ ∀ 𝑧 ∈ 𝑆 ( ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ( .r ‘ 𝑅 ) 𝑧 ) = ( 𝑧 ( .r ‘ 𝑅 ) ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ) ) ) |
| 54 |
44 53
|
mpbird |
⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ) → ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ∈ ( 𝑍 ‘ 𝑆 ) ) |
| 55 |
54
|
3expa |
⊢ ( ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ) ∧ 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ) → ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ∈ ( 𝑍 ‘ 𝑆 ) ) |
| 56 |
55
|
ralrimiva |
⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ) → ∀ 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ∈ ( 𝑍 ‘ 𝑆 ) ) |
| 57 |
27
|
adantll |
⊢ ( ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ) ∧ 𝑧 ∈ 𝑆 ) → ( 𝑥 ( .r ‘ 𝑅 ) 𝑧 ) = ( 𝑧 ( .r ‘ 𝑅 ) 𝑥 ) ) |
| 58 |
57
|
fveq2d |
⊢ ( ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ) ∧ 𝑧 ∈ 𝑆 ) → ( ( invg ‘ 𝑅 ) ‘ ( 𝑥 ( .r ‘ 𝑅 ) 𝑧 ) ) = ( ( invg ‘ 𝑅 ) ‘ ( 𝑧 ( .r ‘ 𝑅 ) 𝑥 ) ) ) |
| 59 |
|
eqid |
⊢ ( invg ‘ 𝑅 ) = ( invg ‘ 𝑅 ) |
| 60 |
|
simplll |
⊢ ( ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ) ∧ 𝑧 ∈ 𝑆 ) → 𝑅 ∈ Rng ) |
| 61 |
|
simplr |
⊢ ( ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ) ∧ 𝑧 ∈ 𝑆 ) → 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ) |
| 62 |
5 61
|
sselid |
⊢ ( ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ) ∧ 𝑧 ∈ 𝑆 ) → 𝑥 ∈ 𝐵 ) |
| 63 |
|
simplr |
⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ) → 𝑆 ⊆ 𝐵 ) |
| 64 |
63
|
sselda |
⊢ ( ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ) ∧ 𝑧 ∈ 𝑆 ) → 𝑧 ∈ 𝐵 ) |
| 65 |
1 10 59 60 62 64
|
rngmneg1 |
⊢ ( ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ) ∧ 𝑧 ∈ 𝑆 ) → ( ( ( invg ‘ 𝑅 ) ‘ 𝑥 ) ( .r ‘ 𝑅 ) 𝑧 ) = ( ( invg ‘ 𝑅 ) ‘ ( 𝑥 ( .r ‘ 𝑅 ) 𝑧 ) ) ) |
| 66 |
1 10 59 60 64 62
|
rngmneg2 |
⊢ ( ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ) ∧ 𝑧 ∈ 𝑆 ) → ( 𝑧 ( .r ‘ 𝑅 ) ( ( invg ‘ 𝑅 ) ‘ 𝑥 ) ) = ( ( invg ‘ 𝑅 ) ‘ ( 𝑧 ( .r ‘ 𝑅 ) 𝑥 ) ) ) |
| 67 |
58 65 66
|
3eqtr4d |
⊢ ( ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ) ∧ 𝑧 ∈ 𝑆 ) → ( ( ( invg ‘ 𝑅 ) ‘ 𝑥 ) ( .r ‘ 𝑅 ) 𝑧 ) = ( 𝑧 ( .r ‘ 𝑅 ) ( ( invg ‘ 𝑅 ) ‘ 𝑥 ) ) ) |
| 68 |
67
|
ralrimiva |
⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ) → ∀ 𝑧 ∈ 𝑆 ( ( ( invg ‘ 𝑅 ) ‘ 𝑥 ) ( .r ‘ 𝑅 ) 𝑧 ) = ( 𝑧 ( .r ‘ 𝑅 ) ( ( invg ‘ 𝑅 ) ‘ 𝑥 ) ) ) |
| 69 |
|
rnggrp |
⊢ ( 𝑅 ∈ Rng → 𝑅 ∈ Grp ) |
| 70 |
69
|
ad2antrr |
⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ) → 𝑅 ∈ Grp ) |
| 71 |
|
simpr |
⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ) → 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ) |
| 72 |
5 71
|
sselid |
⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ) → 𝑥 ∈ 𝐵 ) |
| 73 |
1 59 70 72
|
grpinvcld |
⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ) → ( ( invg ‘ 𝑅 ) ‘ 𝑥 ) ∈ 𝐵 ) |
| 74 |
4 21 3
|
cntzel |
⊢ ( ( 𝑆 ⊆ 𝐵 ∧ ( ( invg ‘ 𝑅 ) ‘ 𝑥 ) ∈ 𝐵 ) → ( ( ( invg ‘ 𝑅 ) ‘ 𝑥 ) ∈ ( 𝑍 ‘ 𝑆 ) ↔ ∀ 𝑧 ∈ 𝑆 ( ( ( invg ‘ 𝑅 ) ‘ 𝑥 ) ( .r ‘ 𝑅 ) 𝑧 ) = ( 𝑧 ( .r ‘ 𝑅 ) ( ( invg ‘ 𝑅 ) ‘ 𝑥 ) ) ) ) |
| 75 |
63 73 74
|
syl2anc |
⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ) → ( ( ( invg ‘ 𝑅 ) ‘ 𝑥 ) ∈ ( 𝑍 ‘ 𝑆 ) ↔ ∀ 𝑧 ∈ 𝑆 ( ( ( invg ‘ 𝑅 ) ‘ 𝑥 ) ( .r ‘ 𝑅 ) 𝑧 ) = ( 𝑧 ( .r ‘ 𝑅 ) ( ( invg ‘ 𝑅 ) ‘ 𝑥 ) ) ) ) |
| 76 |
68 75
|
mpbird |
⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ) → ( ( invg ‘ 𝑅 ) ‘ 𝑥 ) ∈ ( 𝑍 ‘ 𝑆 ) ) |
| 77 |
56 76
|
jca |
⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ) → ( ∀ 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ∈ ( 𝑍 ‘ 𝑆 ) ∧ ( ( invg ‘ 𝑅 ) ‘ 𝑥 ) ∈ ( 𝑍 ‘ 𝑆 ) ) ) |
| 78 |
77
|
ralrimiva |
⊢ ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) → ∀ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ( ∀ 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ∈ ( 𝑍 ‘ 𝑆 ) ∧ ( ( invg ‘ 𝑅 ) ‘ 𝑥 ) ∈ ( 𝑍 ‘ 𝑆 ) ) ) |
| 79 |
69
|
adantr |
⊢ ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) → 𝑅 ∈ Grp ) |
| 80 |
1 38 59
|
issubg2 |
⊢ ( 𝑅 ∈ Grp → ( ( 𝑍 ‘ 𝑆 ) ∈ ( SubGrp ‘ 𝑅 ) ↔ ( ( 𝑍 ‘ 𝑆 ) ⊆ 𝐵 ∧ ( 𝑍 ‘ 𝑆 ) ≠ ∅ ∧ ∀ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ( ∀ 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ∈ ( 𝑍 ‘ 𝑆 ) ∧ ( ( invg ‘ 𝑅 ) ‘ 𝑥 ) ∈ ( 𝑍 ‘ 𝑆 ) ) ) ) ) |
| 81 |
79 80
|
syl |
⊢ ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) → ( ( 𝑍 ‘ 𝑆 ) ∈ ( SubGrp ‘ 𝑅 ) ↔ ( ( 𝑍 ‘ 𝑆 ) ⊆ 𝐵 ∧ ( 𝑍 ‘ 𝑆 ) ≠ ∅ ∧ ∀ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ( ∀ 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ∈ ( 𝑍 ‘ 𝑆 ) ∧ ( ( invg ‘ 𝑅 ) ‘ 𝑥 ) ∈ ( 𝑍 ‘ 𝑆 ) ) ) ) ) |
| 82 |
6 25 78 81
|
mpbir3and |
⊢ ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) → ( 𝑍 ‘ 𝑆 ) ∈ ( SubGrp ‘ 𝑅 ) ) |
| 83 |
|
eqid |
⊢ ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 ) |
| 84 |
83
|
rngmgp |
⊢ ( 𝑅 ∈ Rng → ( mulGrp ‘ 𝑅 ) ∈ Smgrp ) |
| 85 |
83 1
|
mgpbas |
⊢ 𝐵 = ( Base ‘ ( mulGrp ‘ 𝑅 ) ) |
| 86 |
85
|
sseq2i |
⊢ ( 𝑆 ⊆ 𝐵 ↔ 𝑆 ⊆ ( Base ‘ ( mulGrp ‘ 𝑅 ) ) ) |
| 87 |
86
|
biimpi |
⊢ ( 𝑆 ⊆ 𝐵 → 𝑆 ⊆ ( Base ‘ ( mulGrp ‘ 𝑅 ) ) ) |
| 88 |
|
eqid |
⊢ ( Base ‘ ( mulGrp ‘ 𝑅 ) ) = ( Base ‘ ( mulGrp ‘ 𝑅 ) ) |
| 89 |
2
|
fveq2i |
⊢ ( Cntz ‘ 𝑀 ) = ( Cntz ‘ ( mulGrp ‘ 𝑅 ) ) |
| 90 |
3 89
|
eqtri |
⊢ 𝑍 = ( Cntz ‘ ( mulGrp ‘ 𝑅 ) ) |
| 91 |
|
eqid |
⊢ ( 𝑍 ‘ 𝑆 ) = ( 𝑍 ‘ 𝑆 ) |
| 92 |
88 90 91
|
cntzsgrpcl |
⊢ ( ( ( mulGrp ‘ 𝑅 ) ∈ Smgrp ∧ 𝑆 ⊆ ( Base ‘ ( mulGrp ‘ 𝑅 ) ) ) → ∀ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∀ 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ( 𝑥 ( +g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑦 ) ∈ ( 𝑍 ‘ 𝑆 ) ) |
| 93 |
84 87 92
|
syl2an |
⊢ ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) → ∀ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∀ 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ( 𝑥 ( +g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑦 ) ∈ ( 𝑍 ‘ 𝑆 ) ) |
| 94 |
83 10
|
mgpplusg |
⊢ ( .r ‘ 𝑅 ) = ( +g ‘ ( mulGrp ‘ 𝑅 ) ) |
| 95 |
94
|
oveqi |
⊢ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = ( 𝑥 ( +g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑦 ) |
| 96 |
95
|
eleq1i |
⊢ ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ ( 𝑍 ‘ 𝑆 ) ↔ ( 𝑥 ( +g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑦 ) ∈ ( 𝑍 ‘ 𝑆 ) ) |
| 97 |
96
|
2ralbii |
⊢ ( ∀ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∀ 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ ( 𝑍 ‘ 𝑆 ) ↔ ∀ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∀ 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ( 𝑥 ( +g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑦 ) ∈ ( 𝑍 ‘ 𝑆 ) ) |
| 98 |
93 97
|
sylibr |
⊢ ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) → ∀ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∀ 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ ( 𝑍 ‘ 𝑆 ) ) |
| 99 |
1 10
|
issubrng2 |
⊢ ( 𝑅 ∈ Rng → ( ( 𝑍 ‘ 𝑆 ) ∈ ( SubRng ‘ 𝑅 ) ↔ ( ( 𝑍 ‘ 𝑆 ) ∈ ( SubGrp ‘ 𝑅 ) ∧ ∀ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∀ 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ ( 𝑍 ‘ 𝑆 ) ) ) ) |
| 100 |
99
|
adantr |
⊢ ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) → ( ( 𝑍 ‘ 𝑆 ) ∈ ( SubRng ‘ 𝑅 ) ↔ ( ( 𝑍 ‘ 𝑆 ) ∈ ( SubGrp ‘ 𝑅 ) ∧ ∀ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∀ 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ ( 𝑍 ‘ 𝑆 ) ) ) ) |
| 101 |
82 98 100
|
mpbir2and |
⊢ ( ( 𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵 ) → ( 𝑍 ‘ 𝑆 ) ∈ ( SubRng ‘ 𝑅 ) ) |