Step |
Hyp |
Ref |
Expression |
1 |
|
cntzfval.b |
⊢ 𝐵 = ( Base ‘ 𝑀 ) |
2 |
|
cntzfval.p |
⊢ + = ( +g ‘ 𝑀 ) |
3 |
|
cntzfval.z |
⊢ 𝑍 = ( Cntz ‘ 𝑀 ) |
4 |
1 2 3
|
cntzfval |
⊢ ( 𝑀 ∈ V → 𝑍 = ( 𝑠 ∈ 𝒫 𝐵 ↦ { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝑠 ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) } ) ) |
5 |
4
|
fveq1d |
⊢ ( 𝑀 ∈ V → ( 𝑍 ‘ 𝑆 ) = ( ( 𝑠 ∈ 𝒫 𝐵 ↦ { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝑠 ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) } ) ‘ 𝑆 ) ) |
6 |
1
|
fvexi |
⊢ 𝐵 ∈ V |
7 |
6
|
elpw2 |
⊢ ( 𝑆 ∈ 𝒫 𝐵 ↔ 𝑆 ⊆ 𝐵 ) |
8 |
|
raleq |
⊢ ( 𝑠 = 𝑆 → ( ∀ 𝑦 ∈ 𝑠 ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) ↔ ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) ) ) |
9 |
8
|
rabbidv |
⊢ ( 𝑠 = 𝑆 → { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝑠 ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) } = { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) } ) |
10 |
|
eqid |
⊢ ( 𝑠 ∈ 𝒫 𝐵 ↦ { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝑠 ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) } ) = ( 𝑠 ∈ 𝒫 𝐵 ↦ { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝑠 ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) } ) |
11 |
6
|
rabex |
⊢ { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) } ∈ V |
12 |
9 10 11
|
fvmpt |
⊢ ( 𝑆 ∈ 𝒫 𝐵 → ( ( 𝑠 ∈ 𝒫 𝐵 ↦ { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝑠 ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) } ) ‘ 𝑆 ) = { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) } ) |
13 |
7 12
|
sylbir |
⊢ ( 𝑆 ⊆ 𝐵 → ( ( 𝑠 ∈ 𝒫 𝐵 ↦ { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝑠 ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) } ) ‘ 𝑆 ) = { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) } ) |
14 |
5 13
|
sylan9eq |
⊢ ( ( 𝑀 ∈ V ∧ 𝑆 ⊆ 𝐵 ) → ( 𝑍 ‘ 𝑆 ) = { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) } ) |
15 |
|
0fv |
⊢ ( ∅ ‘ 𝑆 ) = ∅ |
16 |
|
fvprc |
⊢ ( ¬ 𝑀 ∈ V → ( Cntz ‘ 𝑀 ) = ∅ ) |
17 |
3 16
|
eqtrid |
⊢ ( ¬ 𝑀 ∈ V → 𝑍 = ∅ ) |
18 |
17
|
fveq1d |
⊢ ( ¬ 𝑀 ∈ V → ( 𝑍 ‘ 𝑆 ) = ( ∅ ‘ 𝑆 ) ) |
19 |
|
ssrab2 |
⊢ { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) } ⊆ 𝐵 |
20 |
|
fvprc |
⊢ ( ¬ 𝑀 ∈ V → ( Base ‘ 𝑀 ) = ∅ ) |
21 |
1 20
|
eqtrid |
⊢ ( ¬ 𝑀 ∈ V → 𝐵 = ∅ ) |
22 |
19 21
|
sseqtrid |
⊢ ( ¬ 𝑀 ∈ V → { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) } ⊆ ∅ ) |
23 |
|
ss0 |
⊢ ( { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) } ⊆ ∅ → { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) } = ∅ ) |
24 |
22 23
|
syl |
⊢ ( ¬ 𝑀 ∈ V → { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) } = ∅ ) |
25 |
15 18 24
|
3eqtr4a |
⊢ ( ¬ 𝑀 ∈ V → ( 𝑍 ‘ 𝑆 ) = { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) } ) |
26 |
25
|
adantr |
⊢ ( ( ¬ 𝑀 ∈ V ∧ 𝑆 ⊆ 𝐵 ) → ( 𝑍 ‘ 𝑆 ) = { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) } ) |
27 |
14 26
|
pm2.61ian |
⊢ ( 𝑆 ⊆ 𝐵 → ( 𝑍 ‘ 𝑆 ) = { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) } ) |