Metamath Proof Explorer


Theorem cnv0

Description: The converse of the empty set. (Contributed by NM, 6-Apr-1998) Remove dependency on ax-sep , ax-nul , ax-pr . (Revised by KP, 25-Oct-2021)

Ref Expression
Assertion cnv0 ∅ = ∅

Proof

Step Hyp Ref Expression
1 br0 ¬ 𝑦𝑧
2 1 intnan ¬ ( 𝑥 = ⟨ 𝑧 , 𝑦 ⟩ ∧ 𝑦𝑧 )
3 2 nex ¬ ∃ 𝑦 ( 𝑥 = ⟨ 𝑧 , 𝑦 ⟩ ∧ 𝑦𝑧 )
4 3 nex ¬ ∃ 𝑧𝑦 ( 𝑥 = ⟨ 𝑧 , 𝑦 ⟩ ∧ 𝑦𝑧 )
5 df-cnv ∅ = { ⟨ 𝑧 , 𝑦 ⟩ ∣ 𝑦𝑧 }
6 df-opab { ⟨ 𝑧 , 𝑦 ⟩ ∣ 𝑦𝑧 } = { 𝑥 ∣ ∃ 𝑧𝑦 ( 𝑥 = ⟨ 𝑧 , 𝑦 ⟩ ∧ 𝑦𝑧 ) }
7 5 6 eqtri ∅ = { 𝑥 ∣ ∃ 𝑧𝑦 ( 𝑥 = ⟨ 𝑧 , 𝑦 ⟩ ∧ 𝑦𝑧 ) }
8 7 abeq2i ( 𝑥 ∅ ↔ ∃ 𝑧𝑦 ( 𝑥 = ⟨ 𝑧 , 𝑦 ⟩ ∧ 𝑦𝑧 ) )
9 4 8 mtbir ¬ 𝑥
10 9 nel0 ∅ = ∅