Metamath Proof Explorer


Theorem cnvbrabra

Description: The converse bra of the bra of a vector is the vector itself. (Contributed by NM, 30-May-2006) (New usage is discouraged.)

Ref Expression
Assertion cnvbrabra ( 𝐴 ∈ ℋ → ( bra ‘ ( bra ‘ 𝐴 ) ) = 𝐴 )

Proof

Step Hyp Ref Expression
1 bra11 bra : ℋ –1-1-onto→ ( LinFn ∩ ContFn )
2 f1ocnvfv1 ( ( bra : ℋ –1-1-onto→ ( LinFn ∩ ContFn ) ∧ 𝐴 ∈ ℋ ) → ( bra ‘ ( bra ‘ 𝐴 ) ) = 𝐴 )
3 1 2 mpan ( 𝐴 ∈ ℋ → ( bra ‘ ( bra ‘ 𝐴 ) ) = 𝐴 )