Description: The converse bra of the bra of a vector is the vector itself. (Contributed by NM, 30-May-2006) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | cnvbrabra | ⊢ ( 𝐴 ∈ ℋ → ( ◡ bra ‘ ( bra ‘ 𝐴 ) ) = 𝐴 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bra11 | ⊢ bra : ℋ –1-1-onto→ ( LinFn ∩ ContFn ) | |
2 | f1ocnvfv1 | ⊢ ( ( bra : ℋ –1-1-onto→ ( LinFn ∩ ContFn ) ∧ 𝐴 ∈ ℋ ) → ( ◡ bra ‘ ( bra ‘ 𝐴 ) ) = 𝐴 ) | |
3 | 1 2 | mpan | ⊢ ( 𝐴 ∈ ℋ → ( ◡ bra ‘ ( bra ‘ 𝐴 ) ) = 𝐴 ) |