Description: Closure of the converse of the bra function. (Contributed by NM, 26-May-2006) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | cnvbracl | ⊢ ( 𝑇 ∈ ( LinFn ∩ ContFn ) → ( ◡ bra ‘ 𝑇 ) ∈ ℋ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bra11 | ⊢ bra : ℋ –1-1-onto→ ( LinFn ∩ ContFn ) | |
2 | f1ocnvdm | ⊢ ( ( bra : ℋ –1-1-onto→ ( LinFn ∩ ContFn ) ∧ 𝑇 ∈ ( LinFn ∩ ContFn ) ) → ( ◡ bra ‘ 𝑇 ) ∈ ℋ ) | |
3 | 1 2 | mpan | ⊢ ( 𝑇 ∈ ( LinFn ∩ ContFn ) → ( ◡ bra ‘ 𝑇 ) ∈ ℋ ) |