Description: Closure of the converse of the bra function. (Contributed by NM, 26-May-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cnvbracl | ⊢ ( 𝑇 ∈ ( LinFn ∩ ContFn ) → ( ◡ bra ‘ 𝑇 ) ∈ ℋ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bra11 | ⊢ bra : ℋ –1-1-onto→ ( LinFn ∩ ContFn ) | |
| 2 | f1ocnvdm | ⊢ ( ( bra : ℋ –1-1-onto→ ( LinFn ∩ ContFn ) ∧ 𝑇 ∈ ( LinFn ∩ ContFn ) ) → ( ◡ bra ‘ 𝑇 ) ∈ ℋ ) | |
| 3 | 1 2 | mpan | ⊢ ( 𝑇 ∈ ( LinFn ∩ ContFn ) → ( ◡ bra ‘ 𝑇 ) ∈ ℋ ) |