Step |
Hyp |
Ref |
Expression |
1 |
|
cnvbracl |
⊢ ( 𝑇 ∈ ( LinFn ∩ ContFn ) → ( ◡ bra ‘ 𝑇 ) ∈ ℋ ) |
2 |
|
cjcl |
⊢ ( 𝐴 ∈ ℂ → ( ∗ ‘ 𝐴 ) ∈ ℂ ) |
3 |
|
brafnmul |
⊢ ( ( ( ∗ ‘ 𝐴 ) ∈ ℂ ∧ ( ◡ bra ‘ 𝑇 ) ∈ ℋ ) → ( bra ‘ ( ( ∗ ‘ 𝐴 ) ·ℎ ( ◡ bra ‘ 𝑇 ) ) ) = ( ( ∗ ‘ ( ∗ ‘ 𝐴 ) ) ·fn ( bra ‘ ( ◡ bra ‘ 𝑇 ) ) ) ) |
4 |
2 3
|
sylan |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ◡ bra ‘ 𝑇 ) ∈ ℋ ) → ( bra ‘ ( ( ∗ ‘ 𝐴 ) ·ℎ ( ◡ bra ‘ 𝑇 ) ) ) = ( ( ∗ ‘ ( ∗ ‘ 𝐴 ) ) ·fn ( bra ‘ ( ◡ bra ‘ 𝑇 ) ) ) ) |
5 |
|
cjcj |
⊢ ( 𝐴 ∈ ℂ → ( ∗ ‘ ( ∗ ‘ 𝐴 ) ) = 𝐴 ) |
6 |
5
|
adantr |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ◡ bra ‘ 𝑇 ) ∈ ℋ ) → ( ∗ ‘ ( ∗ ‘ 𝐴 ) ) = 𝐴 ) |
7 |
6
|
oveq1d |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ◡ bra ‘ 𝑇 ) ∈ ℋ ) → ( ( ∗ ‘ ( ∗ ‘ 𝐴 ) ) ·fn ( bra ‘ ( ◡ bra ‘ 𝑇 ) ) ) = ( 𝐴 ·fn ( bra ‘ ( ◡ bra ‘ 𝑇 ) ) ) ) |
8 |
4 7
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ◡ bra ‘ 𝑇 ) ∈ ℋ ) → ( bra ‘ ( ( ∗ ‘ 𝐴 ) ·ℎ ( ◡ bra ‘ 𝑇 ) ) ) = ( 𝐴 ·fn ( bra ‘ ( ◡ bra ‘ 𝑇 ) ) ) ) |
9 |
1 8
|
sylan2 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑇 ∈ ( LinFn ∩ ContFn ) ) → ( bra ‘ ( ( ∗ ‘ 𝐴 ) ·ℎ ( ◡ bra ‘ 𝑇 ) ) ) = ( 𝐴 ·fn ( bra ‘ ( ◡ bra ‘ 𝑇 ) ) ) ) |
10 |
|
bracnvbra |
⊢ ( 𝑇 ∈ ( LinFn ∩ ContFn ) → ( bra ‘ ( ◡ bra ‘ 𝑇 ) ) = 𝑇 ) |
11 |
10
|
oveq2d |
⊢ ( 𝑇 ∈ ( LinFn ∩ ContFn ) → ( 𝐴 ·fn ( bra ‘ ( ◡ bra ‘ 𝑇 ) ) ) = ( 𝐴 ·fn 𝑇 ) ) |
12 |
11
|
adantl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑇 ∈ ( LinFn ∩ ContFn ) ) → ( 𝐴 ·fn ( bra ‘ ( ◡ bra ‘ 𝑇 ) ) ) = ( 𝐴 ·fn 𝑇 ) ) |
13 |
9 12
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑇 ∈ ( LinFn ∩ ContFn ) ) → ( bra ‘ ( ( ∗ ‘ 𝐴 ) ·ℎ ( ◡ bra ‘ 𝑇 ) ) ) = ( 𝐴 ·fn 𝑇 ) ) |
14 |
13
|
fveq2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑇 ∈ ( LinFn ∩ ContFn ) ) → ( ◡ bra ‘ ( bra ‘ ( ( ∗ ‘ 𝐴 ) ·ℎ ( ◡ bra ‘ 𝑇 ) ) ) ) = ( ◡ bra ‘ ( 𝐴 ·fn 𝑇 ) ) ) |
15 |
|
hvmulcl |
⊢ ( ( ( ∗ ‘ 𝐴 ) ∈ ℂ ∧ ( ◡ bra ‘ 𝑇 ) ∈ ℋ ) → ( ( ∗ ‘ 𝐴 ) ·ℎ ( ◡ bra ‘ 𝑇 ) ) ∈ ℋ ) |
16 |
2 1 15
|
syl2an |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑇 ∈ ( LinFn ∩ ContFn ) ) → ( ( ∗ ‘ 𝐴 ) ·ℎ ( ◡ bra ‘ 𝑇 ) ) ∈ ℋ ) |
17 |
|
cnvbrabra |
⊢ ( ( ( ∗ ‘ 𝐴 ) ·ℎ ( ◡ bra ‘ 𝑇 ) ) ∈ ℋ → ( ◡ bra ‘ ( bra ‘ ( ( ∗ ‘ 𝐴 ) ·ℎ ( ◡ bra ‘ 𝑇 ) ) ) ) = ( ( ∗ ‘ 𝐴 ) ·ℎ ( ◡ bra ‘ 𝑇 ) ) ) |
18 |
16 17
|
syl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑇 ∈ ( LinFn ∩ ContFn ) ) → ( ◡ bra ‘ ( bra ‘ ( ( ∗ ‘ 𝐴 ) ·ℎ ( ◡ bra ‘ 𝑇 ) ) ) ) = ( ( ∗ ‘ 𝐴 ) ·ℎ ( ◡ bra ‘ 𝑇 ) ) ) |
19 |
14 18
|
eqtr3d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑇 ∈ ( LinFn ∩ ContFn ) ) → ( ◡ bra ‘ ( 𝐴 ·fn 𝑇 ) ) = ( ( ∗ ‘ 𝐴 ) ·ℎ ( ◡ bra ‘ 𝑇 ) ) ) |