Metamath Proof Explorer


Theorem cnvcnv

Description: The double converse of a class strips out all elements that are not ordered pairs. (Contributed by NM, 8-Dec-2003) (Proof shortened by BJ, 26-Nov-2021)

Ref Expression
Assertion cnvcnv 𝐴 = ( 𝐴 ∩ ( V × V ) )

Proof

Step Hyp Ref Expression
1 cnvin ( 𝐴 ( V × V ) ) = ( 𝐴 ( V × V ) )
2 cnvin ( 𝐴 ∩ ( V × V ) ) = ( 𝐴 ( V × V ) )
3 2 cnveqi ( 𝐴 ∩ ( V × V ) ) = ( 𝐴 ( V × V ) )
4 relcnv Rel 𝐴
5 df-rel ( Rel 𝐴 𝐴 ⊆ ( V × V ) )
6 4 5 mpbi 𝐴 ⊆ ( V × V )
7 relxp Rel ( V × V )
8 dfrel2 ( Rel ( V × V ) ↔ ( V × V ) = ( V × V ) )
9 7 8 mpbi ( V × V ) = ( V × V )
10 6 9 sseqtrri 𝐴 ( V × V )
11 dfss ( 𝐴 ( V × V ) ↔ 𝐴 = ( 𝐴 ( V × V ) ) )
12 10 11 mpbi 𝐴 = ( 𝐴 ( V × V ) )
13 1 3 12 3eqtr4ri 𝐴 = ( 𝐴 ∩ ( V × V ) )
14 relinxp Rel ( 𝐴 ∩ ( V × V ) )
15 dfrel2 ( Rel ( 𝐴 ∩ ( V × V ) ) ↔ ( 𝐴 ∩ ( V × V ) ) = ( 𝐴 ∩ ( V × V ) ) )
16 14 15 mpbi ( 𝐴 ∩ ( V × V ) ) = ( 𝐴 ∩ ( V × V ) )
17 13 16 eqtri 𝐴 = ( 𝐴 ∩ ( V × V ) )