Step |
Hyp |
Ref |
Expression |
1 |
|
cnvin |
⊢ ◡ ( ◡ 𝐴 ∩ ◡ ( V × V ) ) = ( ◡ ◡ 𝐴 ∩ ◡ ◡ ( V × V ) ) |
2 |
|
cnvin |
⊢ ◡ ( 𝐴 ∩ ( V × V ) ) = ( ◡ 𝐴 ∩ ◡ ( V × V ) ) |
3 |
2
|
cnveqi |
⊢ ◡ ◡ ( 𝐴 ∩ ( V × V ) ) = ◡ ( ◡ 𝐴 ∩ ◡ ( V × V ) ) |
4 |
|
relcnv |
⊢ Rel ◡ ◡ 𝐴 |
5 |
|
df-rel |
⊢ ( Rel ◡ ◡ 𝐴 ↔ ◡ ◡ 𝐴 ⊆ ( V × V ) ) |
6 |
4 5
|
mpbi |
⊢ ◡ ◡ 𝐴 ⊆ ( V × V ) |
7 |
|
relxp |
⊢ Rel ( V × V ) |
8 |
|
dfrel2 |
⊢ ( Rel ( V × V ) ↔ ◡ ◡ ( V × V ) = ( V × V ) ) |
9 |
7 8
|
mpbi |
⊢ ◡ ◡ ( V × V ) = ( V × V ) |
10 |
6 9
|
sseqtrri |
⊢ ◡ ◡ 𝐴 ⊆ ◡ ◡ ( V × V ) |
11 |
|
dfss |
⊢ ( ◡ ◡ 𝐴 ⊆ ◡ ◡ ( V × V ) ↔ ◡ ◡ 𝐴 = ( ◡ ◡ 𝐴 ∩ ◡ ◡ ( V × V ) ) ) |
12 |
10 11
|
mpbi |
⊢ ◡ ◡ 𝐴 = ( ◡ ◡ 𝐴 ∩ ◡ ◡ ( V × V ) ) |
13 |
1 3 12
|
3eqtr4ri |
⊢ ◡ ◡ 𝐴 = ◡ ◡ ( 𝐴 ∩ ( V × V ) ) |
14 |
|
relinxp |
⊢ Rel ( 𝐴 ∩ ( V × V ) ) |
15 |
|
dfrel2 |
⊢ ( Rel ( 𝐴 ∩ ( V × V ) ) ↔ ◡ ◡ ( 𝐴 ∩ ( V × V ) ) = ( 𝐴 ∩ ( V × V ) ) ) |
16 |
14 15
|
mpbi |
⊢ ◡ ◡ ( 𝐴 ∩ ( V × V ) ) = ( 𝐴 ∩ ( V × V ) ) |
17 |
13 16
|
eqtri |
⊢ ◡ ◡ 𝐴 = ( 𝐴 ∩ ( V × V ) ) |