Metamath Proof Explorer


Theorem cnvcnv3

Description: The set of all ordered pairs in a class is the same as the double converse. (Contributed by Mario Carneiro, 16-Aug-2015)

Ref Expression
Assertion cnvcnv3 𝑅 = { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑥 𝑅 𝑦 }

Proof

Step Hyp Ref Expression
1 df-cnv 𝑅 = { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑦 𝑅 𝑥 }
2 vex 𝑦 ∈ V
3 vex 𝑥 ∈ V
4 2 3 brcnv ( 𝑦 𝑅 𝑥𝑥 𝑅 𝑦 )
5 4 opabbii { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑦 𝑅 𝑥 } = { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑥 𝑅 𝑦 }
6 1 5 eqtri 𝑅 = { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑥 𝑅 𝑦 }