Description: The double converse of the restriction of a class. (Contributed by NM, 3-Jun-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cnvcnvres | ⊢ ◡ ◡ ( 𝐴 ↾ 𝐵 ) = ( ◡ ◡ 𝐴 ↾ 𝐵 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | relres | ⊢ Rel ( 𝐴 ↾ 𝐵 ) | |
| 2 | dfrel2 | ⊢ ( Rel ( 𝐴 ↾ 𝐵 ) ↔ ◡ ◡ ( 𝐴 ↾ 𝐵 ) = ( 𝐴 ↾ 𝐵 ) ) | |
| 3 | 1 2 | mpbi | ⊢ ◡ ◡ ( 𝐴 ↾ 𝐵 ) = ( 𝐴 ↾ 𝐵 ) | 
| 4 | rescnvcnv | ⊢ ( ◡ ◡ 𝐴 ↾ 𝐵 ) = ( 𝐴 ↾ 𝐵 ) | |
| 5 | 3 4 | eqtr4i | ⊢ ◡ ◡ ( 𝐴 ↾ 𝐵 ) = ( ◡ ◡ 𝐴 ↾ 𝐵 ) |