Metamath Proof Explorer


Theorem cnvcnvsn

Description: Double converse of a singleton of an ordered pair. (Unlike cnvsn , this does not need any sethood assumptions on A and B .) (Contributed by Mario Carneiro, 26-Apr-2015)

Ref Expression
Assertion cnvcnvsn { ⟨ 𝐴 , 𝐵 ⟩ } = { ⟨ 𝐵 , 𝐴 ⟩ }

Proof

Step Hyp Ref Expression
1 relcnv Rel { ⟨ 𝐴 , 𝐵 ⟩ }
2 relcnv Rel { ⟨ 𝐵 , 𝐴 ⟩ }
3 vex 𝑥 ∈ V
4 vex 𝑦 ∈ V
5 3 4 opelcnv ( ⟨ 𝑥 , 𝑦 ⟩ ∈ { ⟨ 𝐴 , 𝐵 ⟩ } ↔ ⟨ 𝑦 , 𝑥 ⟩ ∈ { ⟨ 𝐴 , 𝐵 ⟩ } )
6 ancom ( ( 𝑥 = 𝐴𝑦 = 𝐵 ) ↔ ( 𝑦 = 𝐵𝑥 = 𝐴 ) )
7 3 4 opth ( ⟨ 𝑥 , 𝑦 ⟩ = ⟨ 𝐴 , 𝐵 ⟩ ↔ ( 𝑥 = 𝐴𝑦 = 𝐵 ) )
8 4 3 opth ( ⟨ 𝑦 , 𝑥 ⟩ = ⟨ 𝐵 , 𝐴 ⟩ ↔ ( 𝑦 = 𝐵𝑥 = 𝐴 ) )
9 6 7 8 3bitr4i ( ⟨ 𝑥 , 𝑦 ⟩ = ⟨ 𝐴 , 𝐵 ⟩ ↔ ⟨ 𝑦 , 𝑥 ⟩ = ⟨ 𝐵 , 𝐴 ⟩ )
10 opex 𝑥 , 𝑦 ⟩ ∈ V
11 10 elsn ( ⟨ 𝑥 , 𝑦 ⟩ ∈ { ⟨ 𝐴 , 𝐵 ⟩ } ↔ ⟨ 𝑥 , 𝑦 ⟩ = ⟨ 𝐴 , 𝐵 ⟩ )
12 opex 𝑦 , 𝑥 ⟩ ∈ V
13 12 elsn ( ⟨ 𝑦 , 𝑥 ⟩ ∈ { ⟨ 𝐵 , 𝐴 ⟩ } ↔ ⟨ 𝑦 , 𝑥 ⟩ = ⟨ 𝐵 , 𝐴 ⟩ )
14 9 11 13 3bitr4i ( ⟨ 𝑥 , 𝑦 ⟩ ∈ { ⟨ 𝐴 , 𝐵 ⟩ } ↔ ⟨ 𝑦 , 𝑥 ⟩ ∈ { ⟨ 𝐵 , 𝐴 ⟩ } )
15 4 3 opelcnv ( ⟨ 𝑦 , 𝑥 ⟩ ∈ { ⟨ 𝐴 , 𝐵 ⟩ } ↔ ⟨ 𝑥 , 𝑦 ⟩ ∈ { ⟨ 𝐴 , 𝐵 ⟩ } )
16 3 4 opelcnv ( ⟨ 𝑥 , 𝑦 ⟩ ∈ { ⟨ 𝐵 , 𝐴 ⟩ } ↔ ⟨ 𝑦 , 𝑥 ⟩ ∈ { ⟨ 𝐵 , 𝐴 ⟩ } )
17 14 15 16 3bitr4i ( ⟨ 𝑦 , 𝑥 ⟩ ∈ { ⟨ 𝐴 , 𝐵 ⟩ } ↔ ⟨ 𝑥 , 𝑦 ⟩ ∈ { ⟨ 𝐵 , 𝐴 ⟩ } )
18 5 17 bitri ( ⟨ 𝑥 , 𝑦 ⟩ ∈ { ⟨ 𝐴 , 𝐵 ⟩ } ↔ ⟨ 𝑥 , 𝑦 ⟩ ∈ { ⟨ 𝐵 , 𝐴 ⟩ } )
19 1 2 18 eqrelriiv { ⟨ 𝐴 , 𝐵 ⟩ } = { ⟨ 𝐵 , 𝐴 ⟩ }