Description: Equality theorem for converse relation. (Contributed by NM, 13-Aug-1995)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cnveq | ⊢ ( 𝐴 = 𝐵 → ◡ 𝐴 = ◡ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvss | ⊢ ( 𝐴 ⊆ 𝐵 → ◡ 𝐴 ⊆ ◡ 𝐵 ) | |
| 2 | cnvss | ⊢ ( 𝐵 ⊆ 𝐴 → ◡ 𝐵 ⊆ ◡ 𝐴 ) | |
| 3 | 1 2 | anim12i | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴 ) → ( ◡ 𝐴 ⊆ ◡ 𝐵 ∧ ◡ 𝐵 ⊆ ◡ 𝐴 ) ) |
| 4 | eqss | ⊢ ( 𝐴 = 𝐵 ↔ ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴 ) ) | |
| 5 | eqss | ⊢ ( ◡ 𝐴 = ◡ 𝐵 ↔ ( ◡ 𝐴 ⊆ ◡ 𝐵 ∧ ◡ 𝐵 ⊆ ◡ 𝐴 ) ) | |
| 6 | 3 4 5 | 3imtr4i | ⊢ ( 𝐴 = 𝐵 → ◡ 𝐴 = ◡ 𝐵 ) |