Description: A relation empty iff its converse is empty. (Contributed by FL, 19-Sep-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | cnveq0 | ⊢ ( Rel 𝐴 → ( 𝐴 = ∅ ↔ ◡ 𝐴 = ∅ ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnv0 | ⊢ ◡ ∅ = ∅ | |
2 | rel0 | ⊢ Rel ∅ | |
3 | cnveqb | ⊢ ( ( Rel 𝐴 ∧ Rel ∅ ) → ( 𝐴 = ∅ ↔ ◡ 𝐴 = ◡ ∅ ) ) | |
4 | 2 3 | mpan2 | ⊢ ( Rel 𝐴 → ( 𝐴 = ∅ ↔ ◡ 𝐴 = ◡ ∅ ) ) |
5 | eqeq2 | ⊢ ( ∅ = ◡ ∅ → ( ◡ 𝐴 = ∅ ↔ ◡ 𝐴 = ◡ ∅ ) ) | |
6 | 5 | bibi2d | ⊢ ( ∅ = ◡ ∅ → ( ( 𝐴 = ∅ ↔ ◡ 𝐴 = ∅ ) ↔ ( 𝐴 = ∅ ↔ ◡ 𝐴 = ◡ ∅ ) ) ) |
7 | 4 6 | syl5ibr | ⊢ ( ∅ = ◡ ∅ → ( Rel 𝐴 → ( 𝐴 = ∅ ↔ ◡ 𝐴 = ∅ ) ) ) |
8 | 7 | eqcoms | ⊢ ( ◡ ∅ = ∅ → ( Rel 𝐴 → ( 𝐴 = ∅ ↔ ◡ 𝐴 = ∅ ) ) ) |
9 | 1 8 | ax-mp | ⊢ ( Rel 𝐴 → ( 𝐴 = ∅ ↔ ◡ 𝐴 = ∅ ) ) |