Description: A relation empty iff its converse is empty. (Contributed by FL, 19-Sep-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cnveq0 | ⊢ ( Rel 𝐴 → ( 𝐴 = ∅ ↔ ◡ 𝐴 = ∅ ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | cnv0 | ⊢ ◡ ∅ = ∅ | |
| 2 | rel0 | ⊢ Rel ∅ | |
| 3 | cnveqb | ⊢ ( ( Rel 𝐴 ∧ Rel ∅ ) → ( 𝐴 = ∅ ↔ ◡ 𝐴 = ◡ ∅ ) ) | |
| 4 | 2 3 | mpan2 | ⊢ ( Rel 𝐴 → ( 𝐴 = ∅ ↔ ◡ 𝐴 = ◡ ∅ ) ) | 
| 5 | eqeq2 | ⊢ ( ∅ = ◡ ∅ → ( ◡ 𝐴 = ∅ ↔ ◡ 𝐴 = ◡ ∅ ) ) | |
| 6 | 5 | bibi2d | ⊢ ( ∅ = ◡ ∅ → ( ( 𝐴 = ∅ ↔ ◡ 𝐴 = ∅ ) ↔ ( 𝐴 = ∅ ↔ ◡ 𝐴 = ◡ ∅ ) ) ) | 
| 7 | 4 6 | imbitrrid | ⊢ ( ∅ = ◡ ∅ → ( Rel 𝐴 → ( 𝐴 = ∅ ↔ ◡ 𝐴 = ∅ ) ) ) | 
| 8 | 7 | eqcoms | ⊢ ( ◡ ∅ = ∅ → ( Rel 𝐴 → ( 𝐴 = ∅ ↔ ◡ 𝐴 = ∅ ) ) ) | 
| 9 | 1 8 | ax-mp | ⊢ ( Rel 𝐴 → ( 𝐴 = ∅ ↔ ◡ 𝐴 = ∅ ) ) |