Step |
Hyp |
Ref |
Expression |
1 |
|
cnveq |
⊢ ( 𝐴 = 𝐵 → ◡ 𝐴 = ◡ 𝐵 ) |
2 |
|
dfrel2 |
⊢ ( Rel 𝐴 ↔ ◡ ◡ 𝐴 = 𝐴 ) |
3 |
|
dfrel2 |
⊢ ( Rel 𝐵 ↔ ◡ ◡ 𝐵 = 𝐵 ) |
4 |
|
cnveq |
⊢ ( ◡ 𝐴 = ◡ 𝐵 → ◡ ◡ 𝐴 = ◡ ◡ 𝐵 ) |
5 |
|
eqeq2 |
⊢ ( 𝐵 = ◡ ◡ 𝐵 → ( ◡ ◡ 𝐴 = 𝐵 ↔ ◡ ◡ 𝐴 = ◡ ◡ 𝐵 ) ) |
6 |
4 5
|
syl5ibr |
⊢ ( 𝐵 = ◡ ◡ 𝐵 → ( ◡ 𝐴 = ◡ 𝐵 → ◡ ◡ 𝐴 = 𝐵 ) ) |
7 |
6
|
eqcoms |
⊢ ( ◡ ◡ 𝐵 = 𝐵 → ( ◡ 𝐴 = ◡ 𝐵 → ◡ ◡ 𝐴 = 𝐵 ) ) |
8 |
3 7
|
sylbi |
⊢ ( Rel 𝐵 → ( ◡ 𝐴 = ◡ 𝐵 → ◡ ◡ 𝐴 = 𝐵 ) ) |
9 |
|
eqeq1 |
⊢ ( 𝐴 = ◡ ◡ 𝐴 → ( 𝐴 = 𝐵 ↔ ◡ ◡ 𝐴 = 𝐵 ) ) |
10 |
9
|
imbi2d |
⊢ ( 𝐴 = ◡ ◡ 𝐴 → ( ( ◡ 𝐴 = ◡ 𝐵 → 𝐴 = 𝐵 ) ↔ ( ◡ 𝐴 = ◡ 𝐵 → ◡ ◡ 𝐴 = 𝐵 ) ) ) |
11 |
8 10
|
syl5ibr |
⊢ ( 𝐴 = ◡ ◡ 𝐴 → ( Rel 𝐵 → ( ◡ 𝐴 = ◡ 𝐵 → 𝐴 = 𝐵 ) ) ) |
12 |
11
|
eqcoms |
⊢ ( ◡ ◡ 𝐴 = 𝐴 → ( Rel 𝐵 → ( ◡ 𝐴 = ◡ 𝐵 → 𝐴 = 𝐵 ) ) ) |
13 |
2 12
|
sylbi |
⊢ ( Rel 𝐴 → ( Rel 𝐵 → ( ◡ 𝐴 = ◡ 𝐵 → 𝐴 = 𝐵 ) ) ) |
14 |
13
|
imp |
⊢ ( ( Rel 𝐴 ∧ Rel 𝐵 ) → ( ◡ 𝐴 = ◡ 𝐵 → 𝐴 = 𝐵 ) ) |
15 |
1 14
|
impbid2 |
⊢ ( ( Rel 𝐴 ∧ Rel 𝐵 ) → ( 𝐴 = 𝐵 ↔ ◡ 𝐴 = ◡ 𝐵 ) ) |