| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cnveq | ⊢ ( 𝐴  =  𝐵  →  ◡ 𝐴  =  ◡ 𝐵 ) | 
						
							| 2 |  | dfrel2 | ⊢ ( Rel  𝐴  ↔  ◡ ◡ 𝐴  =  𝐴 ) | 
						
							| 3 |  | dfrel2 | ⊢ ( Rel  𝐵  ↔  ◡ ◡ 𝐵  =  𝐵 ) | 
						
							| 4 |  | cnveq | ⊢ ( ◡ 𝐴  =  ◡ 𝐵  →  ◡ ◡ 𝐴  =  ◡ ◡ 𝐵 ) | 
						
							| 5 |  | eqeq2 | ⊢ ( 𝐵  =  ◡ ◡ 𝐵  →  ( ◡ ◡ 𝐴  =  𝐵  ↔  ◡ ◡ 𝐴  =  ◡ ◡ 𝐵 ) ) | 
						
							| 6 | 4 5 | imbitrrid | ⊢ ( 𝐵  =  ◡ ◡ 𝐵  →  ( ◡ 𝐴  =  ◡ 𝐵  →  ◡ ◡ 𝐴  =  𝐵 ) ) | 
						
							| 7 | 6 | eqcoms | ⊢ ( ◡ ◡ 𝐵  =  𝐵  →  ( ◡ 𝐴  =  ◡ 𝐵  →  ◡ ◡ 𝐴  =  𝐵 ) ) | 
						
							| 8 | 3 7 | sylbi | ⊢ ( Rel  𝐵  →  ( ◡ 𝐴  =  ◡ 𝐵  →  ◡ ◡ 𝐴  =  𝐵 ) ) | 
						
							| 9 |  | eqeq1 | ⊢ ( 𝐴  =  ◡ ◡ 𝐴  →  ( 𝐴  =  𝐵  ↔  ◡ ◡ 𝐴  =  𝐵 ) ) | 
						
							| 10 | 9 | imbi2d | ⊢ ( 𝐴  =  ◡ ◡ 𝐴  →  ( ( ◡ 𝐴  =  ◡ 𝐵  →  𝐴  =  𝐵 )  ↔  ( ◡ 𝐴  =  ◡ 𝐵  →  ◡ ◡ 𝐴  =  𝐵 ) ) ) | 
						
							| 11 | 8 10 | imbitrrid | ⊢ ( 𝐴  =  ◡ ◡ 𝐴  →  ( Rel  𝐵  →  ( ◡ 𝐴  =  ◡ 𝐵  →  𝐴  =  𝐵 ) ) ) | 
						
							| 12 | 11 | eqcoms | ⊢ ( ◡ ◡ 𝐴  =  𝐴  →  ( Rel  𝐵  →  ( ◡ 𝐴  =  ◡ 𝐵  →  𝐴  =  𝐵 ) ) ) | 
						
							| 13 | 2 12 | sylbi | ⊢ ( Rel  𝐴  →  ( Rel  𝐵  →  ( ◡ 𝐴  =  ◡ 𝐵  →  𝐴  =  𝐵 ) ) ) | 
						
							| 14 | 13 | imp | ⊢ ( ( Rel  𝐴  ∧  Rel  𝐵 )  →  ( ◡ 𝐴  =  ◡ 𝐵  →  𝐴  =  𝐵 ) ) | 
						
							| 15 | 1 14 | impbid2 | ⊢ ( ( Rel  𝐴  ∧  Rel  𝐵 )  →  ( 𝐴  =  𝐵  ↔  ◡ 𝐴  =  ◡ 𝐵 ) ) |