Description: Equality deduction for converse relation. (Contributed by NM, 6-Dec-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | cnveqd.1 | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | |
| Assertion | cnveqd | ⊢ ( 𝜑 → ◡ 𝐴 = ◡ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnveqd.1 | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | |
| 2 | cnveq | ⊢ ( 𝐴 = 𝐵 → ◡ 𝐴 = ◡ 𝐵 ) | |
| 3 | 1 2 | syl | ⊢ ( 𝜑 → ◡ 𝐴 = ◡ 𝐵 ) |