Description: Equality deduction for converse relation. (Contributed by NM, 6-Dec-2013)
Ref | Expression | ||
---|---|---|---|
Hypothesis | cnveqd.1 | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | |
Assertion | cnveqd | ⊢ ( 𝜑 → ◡ 𝐴 = ◡ 𝐵 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnveqd.1 | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | |
2 | cnveq | ⊢ ( 𝐴 = 𝐵 → ◡ 𝐴 = ◡ 𝐵 ) | |
3 | 1 2 | syl | ⊢ ( 𝜑 → ◡ 𝐴 = ◡ 𝐵 ) |