Description: The converse of a set is a set. Corollary 6.8(1) of TakeutiZaring p. 26. (Contributed by NM, 19-Dec-2003)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | cnvex.1 | ⊢ 𝐴 ∈ V | |
| Assertion | cnvex | ⊢ ◡ 𝐴 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvex.1 | ⊢ 𝐴 ∈ V | |
| 2 | cnvexg | ⊢ ( 𝐴 ∈ V → ◡ 𝐴 ∈ V ) | |
| 3 | 1 2 | ax-mp | ⊢ ◡ 𝐴 ∈ V |