| Step |
Hyp |
Ref |
Expression |
| 1 |
|
relcnv |
⊢ Rel ◡ 𝐴 |
| 2 |
|
relssdmrn |
⊢ ( Rel ◡ 𝐴 → ◡ 𝐴 ⊆ ( dom ◡ 𝐴 × ran ◡ 𝐴 ) ) |
| 3 |
1 2
|
ax-mp |
⊢ ◡ 𝐴 ⊆ ( dom ◡ 𝐴 × ran ◡ 𝐴 ) |
| 4 |
|
df-rn |
⊢ ran 𝐴 = dom ◡ 𝐴 |
| 5 |
|
rnexg |
⊢ ( 𝐴 ∈ 𝑉 → ran 𝐴 ∈ V ) |
| 6 |
4 5
|
eqeltrrid |
⊢ ( 𝐴 ∈ 𝑉 → dom ◡ 𝐴 ∈ V ) |
| 7 |
|
dfdm4 |
⊢ dom 𝐴 = ran ◡ 𝐴 |
| 8 |
|
dmexg |
⊢ ( 𝐴 ∈ 𝑉 → dom 𝐴 ∈ V ) |
| 9 |
7 8
|
eqeltrrid |
⊢ ( 𝐴 ∈ 𝑉 → ran ◡ 𝐴 ∈ V ) |
| 10 |
6 9
|
xpexd |
⊢ ( 𝐴 ∈ 𝑉 → ( dom ◡ 𝐴 × ran ◡ 𝐴 ) ∈ V ) |
| 11 |
|
ssexg |
⊢ ( ( ◡ 𝐴 ⊆ ( dom ◡ 𝐴 × ran ◡ 𝐴 ) ∧ ( dom ◡ 𝐴 × ran ◡ 𝐴 ) ∈ V ) → ◡ 𝐴 ∈ V ) |
| 12 |
3 10 11
|
sylancr |
⊢ ( 𝐴 ∈ 𝑉 → ◡ 𝐴 ∈ V ) |