Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐴 ↦ ∪ ◡ { 𝑥 } ) = ( 𝑥 ∈ 𝐴 ↦ ∪ ◡ { 𝑥 } ) |
2 |
|
snex |
⊢ { 𝑥 } ∈ V |
3 |
2
|
cnvex |
⊢ ◡ { 𝑥 } ∈ V |
4 |
3
|
uniex |
⊢ ∪ ◡ { 𝑥 } ∈ V |
5 |
4
|
a1i |
⊢ ( ( Rel 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ∪ ◡ { 𝑥 } ∈ V ) |
6 |
|
snex |
⊢ { 𝑦 } ∈ V |
7 |
6
|
cnvex |
⊢ ◡ { 𝑦 } ∈ V |
8 |
7
|
uniex |
⊢ ∪ ◡ { 𝑦 } ∈ V |
9 |
8
|
a1i |
⊢ ( ( Rel 𝐴 ∧ 𝑦 ∈ ◡ 𝐴 ) → ∪ ◡ { 𝑦 } ∈ V ) |
10 |
|
cnvf1olem |
⊢ ( ( Rel 𝐴 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = ∪ ◡ { 𝑥 } ) ) → ( 𝑦 ∈ ◡ 𝐴 ∧ 𝑥 = ∪ ◡ { 𝑦 } ) ) |
11 |
|
relcnv |
⊢ Rel ◡ 𝐴 |
12 |
|
simpr |
⊢ ( ( Rel 𝐴 ∧ ( 𝑦 ∈ ◡ 𝐴 ∧ 𝑥 = ∪ ◡ { 𝑦 } ) ) → ( 𝑦 ∈ ◡ 𝐴 ∧ 𝑥 = ∪ ◡ { 𝑦 } ) ) |
13 |
|
cnvf1olem |
⊢ ( ( Rel ◡ 𝐴 ∧ ( 𝑦 ∈ ◡ 𝐴 ∧ 𝑥 = ∪ ◡ { 𝑦 } ) ) → ( 𝑥 ∈ ◡ ◡ 𝐴 ∧ 𝑦 = ∪ ◡ { 𝑥 } ) ) |
14 |
11 12 13
|
sylancr |
⊢ ( ( Rel 𝐴 ∧ ( 𝑦 ∈ ◡ 𝐴 ∧ 𝑥 = ∪ ◡ { 𝑦 } ) ) → ( 𝑥 ∈ ◡ ◡ 𝐴 ∧ 𝑦 = ∪ ◡ { 𝑥 } ) ) |
15 |
|
dfrel2 |
⊢ ( Rel 𝐴 ↔ ◡ ◡ 𝐴 = 𝐴 ) |
16 |
|
eleq2 |
⊢ ( ◡ ◡ 𝐴 = 𝐴 → ( 𝑥 ∈ ◡ ◡ 𝐴 ↔ 𝑥 ∈ 𝐴 ) ) |
17 |
15 16
|
sylbi |
⊢ ( Rel 𝐴 → ( 𝑥 ∈ ◡ ◡ 𝐴 ↔ 𝑥 ∈ 𝐴 ) ) |
18 |
17
|
anbi1d |
⊢ ( Rel 𝐴 → ( ( 𝑥 ∈ ◡ ◡ 𝐴 ∧ 𝑦 = ∪ ◡ { 𝑥 } ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = ∪ ◡ { 𝑥 } ) ) ) |
19 |
18
|
adantr |
⊢ ( ( Rel 𝐴 ∧ ( 𝑦 ∈ ◡ 𝐴 ∧ 𝑥 = ∪ ◡ { 𝑦 } ) ) → ( ( 𝑥 ∈ ◡ ◡ 𝐴 ∧ 𝑦 = ∪ ◡ { 𝑥 } ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = ∪ ◡ { 𝑥 } ) ) ) |
20 |
14 19
|
mpbid |
⊢ ( ( Rel 𝐴 ∧ ( 𝑦 ∈ ◡ 𝐴 ∧ 𝑥 = ∪ ◡ { 𝑦 } ) ) → ( 𝑥 ∈ 𝐴 ∧ 𝑦 = ∪ ◡ { 𝑥 } ) ) |
21 |
10 20
|
impbida |
⊢ ( Rel 𝐴 → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 = ∪ ◡ { 𝑥 } ) ↔ ( 𝑦 ∈ ◡ 𝐴 ∧ 𝑥 = ∪ ◡ { 𝑦 } ) ) ) |
22 |
1 5 9 21
|
f1od |
⊢ ( Rel 𝐴 → ( 𝑥 ∈ 𝐴 ↦ ∪ ◡ { 𝑥 } ) : 𝐴 –1-1-onto→ ◡ 𝐴 ) |