Step |
Hyp |
Ref |
Expression |
1 |
|
simprr |
⊢ ( ( Rel 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 = ∪ ◡ { 𝐵 } ) ) → 𝐶 = ∪ ◡ { 𝐵 } ) |
2 |
|
1st2nd |
⊢ ( ( Rel 𝐴 ∧ 𝐵 ∈ 𝐴 ) → 𝐵 = 〈 ( 1st ‘ 𝐵 ) , ( 2nd ‘ 𝐵 ) 〉 ) |
3 |
2
|
adantrr |
⊢ ( ( Rel 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 = ∪ ◡ { 𝐵 } ) ) → 𝐵 = 〈 ( 1st ‘ 𝐵 ) , ( 2nd ‘ 𝐵 ) 〉 ) |
4 |
3
|
sneqd |
⊢ ( ( Rel 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 = ∪ ◡ { 𝐵 } ) ) → { 𝐵 } = { 〈 ( 1st ‘ 𝐵 ) , ( 2nd ‘ 𝐵 ) 〉 } ) |
5 |
4
|
cnveqd |
⊢ ( ( Rel 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 = ∪ ◡ { 𝐵 } ) ) → ◡ { 𝐵 } = ◡ { 〈 ( 1st ‘ 𝐵 ) , ( 2nd ‘ 𝐵 ) 〉 } ) |
6 |
5
|
unieqd |
⊢ ( ( Rel 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 = ∪ ◡ { 𝐵 } ) ) → ∪ ◡ { 𝐵 } = ∪ ◡ { 〈 ( 1st ‘ 𝐵 ) , ( 2nd ‘ 𝐵 ) 〉 } ) |
7 |
1 6
|
eqtrd |
⊢ ( ( Rel 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 = ∪ ◡ { 𝐵 } ) ) → 𝐶 = ∪ ◡ { 〈 ( 1st ‘ 𝐵 ) , ( 2nd ‘ 𝐵 ) 〉 } ) |
8 |
|
opswap |
⊢ ∪ ◡ { 〈 ( 1st ‘ 𝐵 ) , ( 2nd ‘ 𝐵 ) 〉 } = 〈 ( 2nd ‘ 𝐵 ) , ( 1st ‘ 𝐵 ) 〉 |
9 |
7 8
|
eqtrdi |
⊢ ( ( Rel 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 = ∪ ◡ { 𝐵 } ) ) → 𝐶 = 〈 ( 2nd ‘ 𝐵 ) , ( 1st ‘ 𝐵 ) 〉 ) |
10 |
|
simprl |
⊢ ( ( Rel 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 = ∪ ◡ { 𝐵 } ) ) → 𝐵 ∈ 𝐴 ) |
11 |
3 10
|
eqeltrrd |
⊢ ( ( Rel 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 = ∪ ◡ { 𝐵 } ) ) → 〈 ( 1st ‘ 𝐵 ) , ( 2nd ‘ 𝐵 ) 〉 ∈ 𝐴 ) |
12 |
|
fvex |
⊢ ( 2nd ‘ 𝐵 ) ∈ V |
13 |
|
fvex |
⊢ ( 1st ‘ 𝐵 ) ∈ V |
14 |
12 13
|
opelcnv |
⊢ ( 〈 ( 2nd ‘ 𝐵 ) , ( 1st ‘ 𝐵 ) 〉 ∈ ◡ 𝐴 ↔ 〈 ( 1st ‘ 𝐵 ) , ( 2nd ‘ 𝐵 ) 〉 ∈ 𝐴 ) |
15 |
11 14
|
sylibr |
⊢ ( ( Rel 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 = ∪ ◡ { 𝐵 } ) ) → 〈 ( 2nd ‘ 𝐵 ) , ( 1st ‘ 𝐵 ) 〉 ∈ ◡ 𝐴 ) |
16 |
9 15
|
eqeltrd |
⊢ ( ( Rel 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 = ∪ ◡ { 𝐵 } ) ) → 𝐶 ∈ ◡ 𝐴 ) |
17 |
|
opswap |
⊢ ∪ ◡ { 〈 ( 2nd ‘ 𝐵 ) , ( 1st ‘ 𝐵 ) 〉 } = 〈 ( 1st ‘ 𝐵 ) , ( 2nd ‘ 𝐵 ) 〉 |
18 |
17
|
eqcomi |
⊢ 〈 ( 1st ‘ 𝐵 ) , ( 2nd ‘ 𝐵 ) 〉 = ∪ ◡ { 〈 ( 2nd ‘ 𝐵 ) , ( 1st ‘ 𝐵 ) 〉 } |
19 |
9
|
sneqd |
⊢ ( ( Rel 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 = ∪ ◡ { 𝐵 } ) ) → { 𝐶 } = { 〈 ( 2nd ‘ 𝐵 ) , ( 1st ‘ 𝐵 ) 〉 } ) |
20 |
19
|
cnveqd |
⊢ ( ( Rel 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 = ∪ ◡ { 𝐵 } ) ) → ◡ { 𝐶 } = ◡ { 〈 ( 2nd ‘ 𝐵 ) , ( 1st ‘ 𝐵 ) 〉 } ) |
21 |
20
|
unieqd |
⊢ ( ( Rel 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 = ∪ ◡ { 𝐵 } ) ) → ∪ ◡ { 𝐶 } = ∪ ◡ { 〈 ( 2nd ‘ 𝐵 ) , ( 1st ‘ 𝐵 ) 〉 } ) |
22 |
18 3 21
|
3eqtr4a |
⊢ ( ( Rel 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 = ∪ ◡ { 𝐵 } ) ) → 𝐵 = ∪ ◡ { 𝐶 } ) |
23 |
16 22
|
jca |
⊢ ( ( Rel 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 = ∪ ◡ { 𝐵 } ) ) → ( 𝐶 ∈ ◡ 𝐴 ∧ 𝐵 = ∪ ◡ { 𝐶 } ) ) |