Description: Shorter proof of cnvfi using ax-pow . (Contributed by Mario Carneiro, 28-Dec-2014) (Proof modification is discouraged.) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | cnvfiALT | ⊢ ( 𝐴 ∈ Fin → ◡ 𝐴 ∈ Fin ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvcnvss | ⊢ ◡ ◡ 𝐴 ⊆ 𝐴 | |
2 | ssfi | ⊢ ( ( 𝐴 ∈ Fin ∧ ◡ ◡ 𝐴 ⊆ 𝐴 ) → ◡ ◡ 𝐴 ∈ Fin ) | |
3 | 1 2 | mpan2 | ⊢ ( 𝐴 ∈ Fin → ◡ ◡ 𝐴 ∈ Fin ) |
4 | relcnv | ⊢ Rel ◡ 𝐴 | |
5 | cnvexg | ⊢ ( 𝐴 ∈ Fin → ◡ 𝐴 ∈ V ) | |
6 | cnven | ⊢ ( ( Rel ◡ 𝐴 ∧ ◡ 𝐴 ∈ V ) → ◡ 𝐴 ≈ ◡ ◡ 𝐴 ) | |
7 | 4 5 6 | sylancr | ⊢ ( 𝐴 ∈ Fin → ◡ 𝐴 ≈ ◡ ◡ 𝐴 ) |
8 | enfii | ⊢ ( ( ◡ ◡ 𝐴 ∈ Fin ∧ ◡ 𝐴 ≈ ◡ ◡ 𝐴 ) → ◡ 𝐴 ∈ Fin ) | |
9 | 3 7 8 | syl2anc | ⊢ ( 𝐴 ∈ Fin → ◡ 𝐴 ∈ Fin ) |