Metamath Proof Explorer


Theorem cnvfiALT

Description: Shorter proof of cnvfi using ax-pow . (Contributed by Mario Carneiro, 28-Dec-2014) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion cnvfiALT ( 𝐴 ∈ Fin → 𝐴 ∈ Fin )

Proof

Step Hyp Ref Expression
1 cnvcnvss 𝐴𝐴
2 ssfi ( ( 𝐴 ∈ Fin ∧ 𝐴𝐴 ) → 𝐴 ∈ Fin )
3 1 2 mpan2 ( 𝐴 ∈ Fin → 𝐴 ∈ Fin )
4 relcnv Rel 𝐴
5 cnvexg ( 𝐴 ∈ Fin → 𝐴 ∈ V )
6 cnven ( ( Rel 𝐴 𝐴 ∈ V ) → 𝐴 𝐴 )
7 4 5 6 sylancr ( 𝐴 ∈ Fin → 𝐴 𝐴 )
8 enfii ( ( 𝐴 ∈ Fin ∧ 𝐴 𝐴 ) → 𝐴 ∈ Fin )
9 3 7 8 syl2anc ( 𝐴 ∈ Fin → 𝐴 ∈ Fin )