Metamath Proof Explorer


Theorem cnvi

Description: The converse of the identity relation. Theorem 3.7(ii) of Monk1 p. 36. (Contributed by NM, 26-Apr-1998) (Proof shortened by Andrew Salmon, 27-Aug-2011)

Ref Expression
Assertion cnvi I = I

Proof

Step Hyp Ref Expression
1 vex 𝑥 ∈ V
2 1 ideq ( 𝑦 I 𝑥𝑦 = 𝑥 )
3 equcom ( 𝑦 = 𝑥𝑥 = 𝑦 )
4 2 3 bitri ( 𝑦 I 𝑥𝑥 = 𝑦 )
5 4 opabbii { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑦 I 𝑥 } = { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑥 = 𝑦 }
6 df-cnv I = { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑦 I 𝑥 }
7 df-id I = { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑥 = 𝑦 }
8 5 6 7 3eqtr4i I = I