| Step | Hyp | Ref | Expression | 
						
							| 1 |  | inpreima | ⊢ ( Fun  𝐹  →  ( ◡ 𝐹  “  ( ran  𝐹  ∩  𝐴 ) )  =  ( ( ◡ 𝐹  “  ran  𝐹 )  ∩  ( ◡ 𝐹  “  𝐴 ) ) ) | 
						
							| 2 |  | cnvimass | ⊢ ( ◡ 𝐹  “  𝐴 )  ⊆  dom  𝐹 | 
						
							| 3 |  | cnvimarndm | ⊢ ( ◡ 𝐹  “  ran  𝐹 )  =  dom  𝐹 | 
						
							| 4 | 2 3 | sseqtrri | ⊢ ( ◡ 𝐹  “  𝐴 )  ⊆  ( ◡ 𝐹  “  ran  𝐹 ) | 
						
							| 5 |  | dfss2 | ⊢ ( ( ◡ 𝐹  “  𝐴 )  ⊆  ( ◡ 𝐹  “  ran  𝐹 )  ↔  ( ( ◡ 𝐹  “  𝐴 )  ∩  ( ◡ 𝐹  “  ran  𝐹 ) )  =  ( ◡ 𝐹  “  𝐴 ) ) | 
						
							| 6 | 4 5 | mpbi | ⊢ ( ( ◡ 𝐹  “  𝐴 )  ∩  ( ◡ 𝐹  “  ran  𝐹 ) )  =  ( ◡ 𝐹  “  𝐴 ) | 
						
							| 7 | 6 | ineqcomi | ⊢ ( ( ◡ 𝐹  “  ran  𝐹 )  ∩  ( ◡ 𝐹  “  𝐴 ) )  =  ( ◡ 𝐹  “  𝐴 ) | 
						
							| 8 | 1 7 | eqtrdi | ⊢ ( Fun  𝐹  →  ( ◡ 𝐹  “  ( ran  𝐹  ∩  𝐴 ) )  =  ( ◡ 𝐹  “  𝐴 ) ) |