Metamath Proof Explorer


Theorem cnvimamptfin

Description: A preimage of a mapping with a finite domain under any class is finite. In contrast to fisuppfi , the range of the mapping needs not to be known. (Contributed by AV, 21-Dec-2018)

Ref Expression
Hypothesis cnvimamptfin.n ( 𝜑𝑁 ∈ Fin )
Assertion cnvimamptfin ( 𝜑 → ( ( 𝑝𝑁𝑋 ) “ 𝑌 ) ∈ Fin )

Proof

Step Hyp Ref Expression
1 cnvimamptfin.n ( 𝜑𝑁 ∈ Fin )
2 cnvimass ( ( 𝑝𝑁𝑋 ) “ 𝑌 ) ⊆ dom ( 𝑝𝑁𝑋 )
3 eqid ( 𝑝𝑁𝑋 ) = ( 𝑝𝑁𝑋 )
4 3 dmmptss dom ( 𝑝𝑁𝑋 ) ⊆ 𝑁
5 2 4 sstri ( ( 𝑝𝑁𝑋 ) “ 𝑌 ) ⊆ 𝑁
6 ssfi ( ( 𝑁 ∈ Fin ∧ ( ( 𝑝𝑁𝑋 ) “ 𝑌 ) ⊆ 𝑁 ) → ( ( 𝑝𝑁𝑋 ) “ 𝑌 ) ∈ Fin )
7 1 5 6 sylancl ( 𝜑 → ( ( 𝑝𝑁𝑋 ) “ 𝑌 ) ∈ Fin )