Step |
Hyp |
Ref |
Expression |
1 |
|
ssequn1 |
⊢ ( ran 𝐹 ⊆ 𝐴 ↔ ( ran 𝐹 ∪ 𝐴 ) = 𝐴 ) |
2 |
|
imaeq2 |
⊢ ( 𝐴 = ( ran 𝐹 ∪ 𝐴 ) → ( ◡ 𝐹 “ 𝐴 ) = ( ◡ 𝐹 “ ( ran 𝐹 ∪ 𝐴 ) ) ) |
3 |
|
imaundi |
⊢ ( ◡ 𝐹 “ ( ran 𝐹 ∪ 𝐴 ) ) = ( ( ◡ 𝐹 “ ran 𝐹 ) ∪ ( ◡ 𝐹 “ 𝐴 ) ) |
4 |
2 3
|
eqtrdi |
⊢ ( 𝐴 = ( ran 𝐹 ∪ 𝐴 ) → ( ◡ 𝐹 “ 𝐴 ) = ( ( ◡ 𝐹 “ ran 𝐹 ) ∪ ( ◡ 𝐹 “ 𝐴 ) ) ) |
5 |
|
cnvimarndm |
⊢ ( ◡ 𝐹 “ ran 𝐹 ) = dom 𝐹 |
6 |
5
|
uneq1i |
⊢ ( ( ◡ 𝐹 “ ran 𝐹 ) ∪ ( ◡ 𝐹 “ 𝐴 ) ) = ( dom 𝐹 ∪ ( ◡ 𝐹 “ 𝐴 ) ) |
7 |
|
cnvimass |
⊢ ( ◡ 𝐹 “ 𝐴 ) ⊆ dom 𝐹 |
8 |
|
ssequn2 |
⊢ ( ( ◡ 𝐹 “ 𝐴 ) ⊆ dom 𝐹 ↔ ( dom 𝐹 ∪ ( ◡ 𝐹 “ 𝐴 ) ) = dom 𝐹 ) |
9 |
7 8
|
mpbi |
⊢ ( dom 𝐹 ∪ ( ◡ 𝐹 “ 𝐴 ) ) = dom 𝐹 |
10 |
6 9
|
eqtri |
⊢ ( ( ◡ 𝐹 “ ran 𝐹 ) ∪ ( ◡ 𝐹 “ 𝐴 ) ) = dom 𝐹 |
11 |
4 10
|
eqtrdi |
⊢ ( 𝐴 = ( ran 𝐹 ∪ 𝐴 ) → ( ◡ 𝐹 “ 𝐴 ) = dom 𝐹 ) |
12 |
11
|
eqcoms |
⊢ ( ( ran 𝐹 ∪ 𝐴 ) = 𝐴 → ( ◡ 𝐹 “ 𝐴 ) = dom 𝐹 ) |
13 |
1 12
|
sylbi |
⊢ ( ran 𝐹 ⊆ 𝐴 → ( ◡ 𝐹 “ 𝐴 ) = dom 𝐹 ) |