Description: Distributive law for converse over intersection. Theorem 15 of Suppes p. 62. (Contributed by NM, 25-Mar-1998) (Revised by Mario Carneiro, 26-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cnvin | ⊢ ◡ ( 𝐴 ∩ 𝐵 ) = ( ◡ 𝐴 ∩ ◡ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvdif | ⊢ ◡ ( 𝐴 ∖ ( 𝐴 ∖ 𝐵 ) ) = ( ◡ 𝐴 ∖ ◡ ( 𝐴 ∖ 𝐵 ) ) | |
| 2 | cnvdif | ⊢ ◡ ( 𝐴 ∖ 𝐵 ) = ( ◡ 𝐴 ∖ ◡ 𝐵 ) | |
| 3 | 2 | difeq2i | ⊢ ( ◡ 𝐴 ∖ ◡ ( 𝐴 ∖ 𝐵 ) ) = ( ◡ 𝐴 ∖ ( ◡ 𝐴 ∖ ◡ 𝐵 ) ) |
| 4 | 1 3 | eqtri | ⊢ ◡ ( 𝐴 ∖ ( 𝐴 ∖ 𝐵 ) ) = ( ◡ 𝐴 ∖ ( ◡ 𝐴 ∖ ◡ 𝐵 ) ) |
| 5 | dfin4 | ⊢ ( 𝐴 ∩ 𝐵 ) = ( 𝐴 ∖ ( 𝐴 ∖ 𝐵 ) ) | |
| 6 | 5 | cnveqi | ⊢ ◡ ( 𝐴 ∩ 𝐵 ) = ◡ ( 𝐴 ∖ ( 𝐴 ∖ 𝐵 ) ) |
| 7 | dfin4 | ⊢ ( ◡ 𝐴 ∩ ◡ 𝐵 ) = ( ◡ 𝐴 ∖ ( ◡ 𝐴 ∖ ◡ 𝐵 ) ) | |
| 8 | 4 6 7 | 3eqtr4i | ⊢ ◡ ( 𝐴 ∩ 𝐵 ) = ( ◡ 𝐴 ∩ ◡ 𝐵 ) |