Metamath Proof Explorer


Theorem cnvin

Description: Distributive law for converse over intersection. Theorem 15 of Suppes p. 62. (Contributed by NM, 25-Mar-1998) (Revised by Mario Carneiro, 26-Jun-2014)

Ref Expression
Assertion cnvin ( 𝐴𝐵 ) = ( 𝐴 𝐵 )

Proof

Step Hyp Ref Expression
1 cnvdif ( 𝐴 ∖ ( 𝐴𝐵 ) ) = ( 𝐴 ( 𝐴𝐵 ) )
2 cnvdif ( 𝐴𝐵 ) = ( 𝐴 𝐵 )
3 2 difeq2i ( 𝐴 ( 𝐴𝐵 ) ) = ( 𝐴 ∖ ( 𝐴 𝐵 ) )
4 1 3 eqtri ( 𝐴 ∖ ( 𝐴𝐵 ) ) = ( 𝐴 ∖ ( 𝐴 𝐵 ) )
5 dfin4 ( 𝐴𝐵 ) = ( 𝐴 ∖ ( 𝐴𝐵 ) )
6 5 cnveqi ( 𝐴𝐵 ) = ( 𝐴 ∖ ( 𝐴𝐵 ) )
7 dfin4 ( 𝐴 𝐵 ) = ( 𝐴 ∖ ( 𝐴 𝐵 ) )
8 4 6 7 3eqtr4i ( 𝐴𝐵 ) = ( 𝐴 𝐵 )