Metamath Proof Explorer


Theorem cnvmot

Description: The converse of a motion is a motion. (Contributed by Thierry Arnoux, 15-Dec-2019)

Ref Expression
Hypotheses ismot.p 𝑃 = ( Base ‘ 𝐺 )
ismot.m = ( dist ‘ 𝐺 )
motgrp.1 ( 𝜑𝐺𝑉 )
motco.2 ( 𝜑𝐹 ∈ ( 𝐺 Ismt 𝐺 ) )
Assertion cnvmot ( 𝜑 𝐹 ∈ ( 𝐺 Ismt 𝐺 ) )

Proof

Step Hyp Ref Expression
1 ismot.p 𝑃 = ( Base ‘ 𝐺 )
2 ismot.m = ( dist ‘ 𝐺 )
3 motgrp.1 ( 𝜑𝐺𝑉 )
4 motco.2 ( 𝜑𝐹 ∈ ( 𝐺 Ismt 𝐺 ) )
5 1 2 3 4 motf1o ( 𝜑𝐹 : 𝑃1-1-onto𝑃 )
6 f1ocnv ( 𝐹 : 𝑃1-1-onto𝑃 𝐹 : 𝑃1-1-onto𝑃 )
7 5 6 syl ( 𝜑 𝐹 : 𝑃1-1-onto𝑃 )
8 3 adantr ( ( 𝜑 ∧ ( 𝑎𝑃𝑏𝑃 ) ) → 𝐺𝑉 )
9 f1of ( 𝐹 : 𝑃1-1-onto𝑃 𝐹 : 𝑃𝑃 )
10 7 9 syl ( 𝜑 𝐹 : 𝑃𝑃 )
11 10 adantr ( ( 𝜑 ∧ ( 𝑎𝑃𝑏𝑃 ) ) → 𝐹 : 𝑃𝑃 )
12 simprl ( ( 𝜑 ∧ ( 𝑎𝑃𝑏𝑃 ) ) → 𝑎𝑃 )
13 11 12 ffvelrnd ( ( 𝜑 ∧ ( 𝑎𝑃𝑏𝑃 ) ) → ( 𝐹𝑎 ) ∈ 𝑃 )
14 simprr ( ( 𝜑 ∧ ( 𝑎𝑃𝑏𝑃 ) ) → 𝑏𝑃 )
15 11 14 ffvelrnd ( ( 𝜑 ∧ ( 𝑎𝑃𝑏𝑃 ) ) → ( 𝐹𝑏 ) ∈ 𝑃 )
16 4 adantr ( ( 𝜑 ∧ ( 𝑎𝑃𝑏𝑃 ) ) → 𝐹 ∈ ( 𝐺 Ismt 𝐺 ) )
17 1 2 8 13 15 16 motcgr ( ( 𝜑 ∧ ( 𝑎𝑃𝑏𝑃 ) ) → ( ( 𝐹 ‘ ( 𝐹𝑎 ) ) ( 𝐹 ‘ ( 𝐹𝑏 ) ) ) = ( ( 𝐹𝑎 ) ( 𝐹𝑏 ) ) )
18 f1ocnvfv2 ( ( 𝐹 : 𝑃1-1-onto𝑃𝑎𝑃 ) → ( 𝐹 ‘ ( 𝐹𝑎 ) ) = 𝑎 )
19 5 12 18 syl2an2r ( ( 𝜑 ∧ ( 𝑎𝑃𝑏𝑃 ) ) → ( 𝐹 ‘ ( 𝐹𝑎 ) ) = 𝑎 )
20 f1ocnvfv2 ( ( 𝐹 : 𝑃1-1-onto𝑃𝑏𝑃 ) → ( 𝐹 ‘ ( 𝐹𝑏 ) ) = 𝑏 )
21 5 14 20 syl2an2r ( ( 𝜑 ∧ ( 𝑎𝑃𝑏𝑃 ) ) → ( 𝐹 ‘ ( 𝐹𝑏 ) ) = 𝑏 )
22 19 21 oveq12d ( ( 𝜑 ∧ ( 𝑎𝑃𝑏𝑃 ) ) → ( ( 𝐹 ‘ ( 𝐹𝑎 ) ) ( 𝐹 ‘ ( 𝐹𝑏 ) ) ) = ( 𝑎 𝑏 ) )
23 17 22 eqtr3d ( ( 𝜑 ∧ ( 𝑎𝑃𝑏𝑃 ) ) → ( ( 𝐹𝑎 ) ( 𝐹𝑏 ) ) = ( 𝑎 𝑏 ) )
24 23 ralrimivva ( 𝜑 → ∀ 𝑎𝑃𝑏𝑃 ( ( 𝐹𝑎 ) ( 𝐹𝑏 ) ) = ( 𝑎 𝑏 ) )
25 1 2 ismot ( 𝐺𝑉 → ( 𝐹 ∈ ( 𝐺 Ismt 𝐺 ) ↔ ( 𝐹 : 𝑃1-1-onto𝑃 ∧ ∀ 𝑎𝑃𝑏𝑃 ( ( 𝐹𝑎 ) ( 𝐹𝑏 ) ) = ( 𝑎 𝑏 ) ) ) )
26 3 25 syl ( 𝜑 → ( 𝐹 ∈ ( 𝐺 Ismt 𝐺 ) ↔ ( 𝐹 : 𝑃1-1-onto𝑃 ∧ ∀ 𝑎𝑃𝑏𝑃 ( ( 𝐹𝑎 ) ( 𝐹𝑏 ) ) = ( 𝑎 𝑏 ) ) ) )
27 7 24 26 mpbir2and ( 𝜑 𝐹 ∈ ( 𝐺 Ismt 𝐺 ) )