| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ismot.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
| 2 |
|
ismot.m |
⊢ − = ( dist ‘ 𝐺 ) |
| 3 |
|
motgrp.1 |
⊢ ( 𝜑 → 𝐺 ∈ 𝑉 ) |
| 4 |
|
motco.2 |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐺 Ismt 𝐺 ) ) |
| 5 |
1 2 3 4
|
motf1o |
⊢ ( 𝜑 → 𝐹 : 𝑃 –1-1-onto→ 𝑃 ) |
| 6 |
|
f1ocnv |
⊢ ( 𝐹 : 𝑃 –1-1-onto→ 𝑃 → ◡ 𝐹 : 𝑃 –1-1-onto→ 𝑃 ) |
| 7 |
5 6
|
syl |
⊢ ( 𝜑 → ◡ 𝐹 : 𝑃 –1-1-onto→ 𝑃 ) |
| 8 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃 ) ) → 𝐺 ∈ 𝑉 ) |
| 9 |
|
f1of |
⊢ ( ◡ 𝐹 : 𝑃 –1-1-onto→ 𝑃 → ◡ 𝐹 : 𝑃 ⟶ 𝑃 ) |
| 10 |
7 9
|
syl |
⊢ ( 𝜑 → ◡ 𝐹 : 𝑃 ⟶ 𝑃 ) |
| 11 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃 ) ) → ◡ 𝐹 : 𝑃 ⟶ 𝑃 ) |
| 12 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃 ) ) → 𝑎 ∈ 𝑃 ) |
| 13 |
11 12
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃 ) ) → ( ◡ 𝐹 ‘ 𝑎 ) ∈ 𝑃 ) |
| 14 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃 ) ) → 𝑏 ∈ 𝑃 ) |
| 15 |
11 14
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃 ) ) → ( ◡ 𝐹 ‘ 𝑏 ) ∈ 𝑃 ) |
| 16 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃 ) ) → 𝐹 ∈ ( 𝐺 Ismt 𝐺 ) ) |
| 17 |
1 2 8 13 15 16
|
motcgr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃 ) ) → ( ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑎 ) ) − ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑏 ) ) ) = ( ( ◡ 𝐹 ‘ 𝑎 ) − ( ◡ 𝐹 ‘ 𝑏 ) ) ) |
| 18 |
|
f1ocnvfv2 |
⊢ ( ( 𝐹 : 𝑃 –1-1-onto→ 𝑃 ∧ 𝑎 ∈ 𝑃 ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑎 ) ) = 𝑎 ) |
| 19 |
5 12 18
|
syl2an2r |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃 ) ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑎 ) ) = 𝑎 ) |
| 20 |
|
f1ocnvfv2 |
⊢ ( ( 𝐹 : 𝑃 –1-1-onto→ 𝑃 ∧ 𝑏 ∈ 𝑃 ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑏 ) ) = 𝑏 ) |
| 21 |
5 14 20
|
syl2an2r |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃 ) ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑏 ) ) = 𝑏 ) |
| 22 |
19 21
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃 ) ) → ( ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑎 ) ) − ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑏 ) ) ) = ( 𝑎 − 𝑏 ) ) |
| 23 |
17 22
|
eqtr3d |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃 ) ) → ( ( ◡ 𝐹 ‘ 𝑎 ) − ( ◡ 𝐹 ‘ 𝑏 ) ) = ( 𝑎 − 𝑏 ) ) |
| 24 |
23
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑎 ∈ 𝑃 ∀ 𝑏 ∈ 𝑃 ( ( ◡ 𝐹 ‘ 𝑎 ) − ( ◡ 𝐹 ‘ 𝑏 ) ) = ( 𝑎 − 𝑏 ) ) |
| 25 |
1 2
|
ismot |
⊢ ( 𝐺 ∈ 𝑉 → ( ◡ 𝐹 ∈ ( 𝐺 Ismt 𝐺 ) ↔ ( ◡ 𝐹 : 𝑃 –1-1-onto→ 𝑃 ∧ ∀ 𝑎 ∈ 𝑃 ∀ 𝑏 ∈ 𝑃 ( ( ◡ 𝐹 ‘ 𝑎 ) − ( ◡ 𝐹 ‘ 𝑏 ) ) = ( 𝑎 − 𝑏 ) ) ) ) |
| 26 |
3 25
|
syl |
⊢ ( 𝜑 → ( ◡ 𝐹 ∈ ( 𝐺 Ismt 𝐺 ) ↔ ( ◡ 𝐹 : 𝑃 –1-1-onto→ 𝑃 ∧ ∀ 𝑎 ∈ 𝑃 ∀ 𝑏 ∈ 𝑃 ( ( ◡ 𝐹 ‘ 𝑎 ) − ( ◡ 𝐹 ‘ 𝑏 ) ) = ( 𝑎 − 𝑏 ) ) ) ) |
| 27 |
7 24 26
|
mpbir2and |
⊢ ( 𝜑 → ◡ 𝐹 ∈ ( 𝐺 Ismt 𝐺 ) ) |