Metamath Proof Explorer


Theorem cnvopab

Description: The converse of a class abstraction of ordered pairs. (Contributed by NM, 11-Dec-2003) (Proof shortened by Andrew Salmon, 27-Aug-2011) Avoid ax-10 , ax-12 . (Revised by SN, 7-Jun-2025)

Ref Expression
Assertion cnvopab { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜑 } = { ⟨ 𝑦 , 𝑥 ⟩ ∣ 𝜑 }

Proof

Step Hyp Ref Expression
1 relcnv Rel { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜑 }
2 relopabv Rel { ⟨ 𝑦 , 𝑥 ⟩ ∣ 𝜑 }
3 elopab ( ⟨ 𝑤 , 𝑧 ⟩ ∈ { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜑 } ↔ ∃ 𝑥𝑦 ( ⟨ 𝑤 , 𝑧 ⟩ = ⟨ 𝑥 , 𝑦 ⟩ ∧ 𝜑 ) )
4 excom ( ∃ 𝑥𝑦 ( ⟨ 𝑤 , 𝑧 ⟩ = ⟨ 𝑥 , 𝑦 ⟩ ∧ 𝜑 ) ↔ ∃ 𝑦𝑥 ( ⟨ 𝑤 , 𝑧 ⟩ = ⟨ 𝑥 , 𝑦 ⟩ ∧ 𝜑 ) )
5 ancom ( ( 𝑤 = 𝑥𝑧 = 𝑦 ) ↔ ( 𝑧 = 𝑦𝑤 = 𝑥 ) )
6 vex 𝑤 ∈ V
7 vex 𝑧 ∈ V
8 6 7 opth ( ⟨ 𝑤 , 𝑧 ⟩ = ⟨ 𝑥 , 𝑦 ⟩ ↔ ( 𝑤 = 𝑥𝑧 = 𝑦 ) )
9 7 6 opth ( ⟨ 𝑧 , 𝑤 ⟩ = ⟨ 𝑦 , 𝑥 ⟩ ↔ ( 𝑧 = 𝑦𝑤 = 𝑥 ) )
10 5 8 9 3bitr4i ( ⟨ 𝑤 , 𝑧 ⟩ = ⟨ 𝑥 , 𝑦 ⟩ ↔ ⟨ 𝑧 , 𝑤 ⟩ = ⟨ 𝑦 , 𝑥 ⟩ )
11 10 anbi1i ( ( ⟨ 𝑤 , 𝑧 ⟩ = ⟨ 𝑥 , 𝑦 ⟩ ∧ 𝜑 ) ↔ ( ⟨ 𝑧 , 𝑤 ⟩ = ⟨ 𝑦 , 𝑥 ⟩ ∧ 𝜑 ) )
12 11 2exbii ( ∃ 𝑦𝑥 ( ⟨ 𝑤 , 𝑧 ⟩ = ⟨ 𝑥 , 𝑦 ⟩ ∧ 𝜑 ) ↔ ∃ 𝑦𝑥 ( ⟨ 𝑧 , 𝑤 ⟩ = ⟨ 𝑦 , 𝑥 ⟩ ∧ 𝜑 ) )
13 3 4 12 3bitri ( ⟨ 𝑤 , 𝑧 ⟩ ∈ { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜑 } ↔ ∃ 𝑦𝑥 ( ⟨ 𝑧 , 𝑤 ⟩ = ⟨ 𝑦 , 𝑥 ⟩ ∧ 𝜑 ) )
14 7 6 opelcnv ( ⟨ 𝑧 , 𝑤 ⟩ ∈ { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜑 } ↔ ⟨ 𝑤 , 𝑧 ⟩ ∈ { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜑 } )
15 elopab ( ⟨ 𝑧 , 𝑤 ⟩ ∈ { ⟨ 𝑦 , 𝑥 ⟩ ∣ 𝜑 } ↔ ∃ 𝑦𝑥 ( ⟨ 𝑧 , 𝑤 ⟩ = ⟨ 𝑦 , 𝑥 ⟩ ∧ 𝜑 ) )
16 13 14 15 3bitr4i ( ⟨ 𝑧 , 𝑤 ⟩ ∈ { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜑 } ↔ ⟨ 𝑧 , 𝑤 ⟩ ∈ { ⟨ 𝑦 , 𝑥 ⟩ ∣ 𝜑 } )
17 1 2 16 eqrelriiv { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜑 } = { ⟨ 𝑦 , 𝑥 ⟩ ∣ 𝜑 }