Step |
Hyp |
Ref |
Expression |
1 |
|
cnvordtrestixx.1 |
⊢ 𝐴 ⊆ ℝ* |
2 |
|
cnvordtrestixx.2 |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑥 [,] 𝑦 ) ⊆ 𝐴 ) |
3 |
|
lern |
⊢ ℝ* = ran ≤ |
4 |
|
df-rn |
⊢ ran ≤ = dom ◡ ≤ |
5 |
3 4
|
eqtri |
⊢ ℝ* = dom ◡ ≤ |
6 |
|
letsr |
⊢ ≤ ∈ TosetRel |
7 |
|
cnvtsr |
⊢ ( ≤ ∈ TosetRel → ◡ ≤ ∈ TosetRel ) |
8 |
6 7
|
ax-mp |
⊢ ◡ ≤ ∈ TosetRel |
9 |
8
|
a1i |
⊢ ( ⊤ → ◡ ≤ ∈ TosetRel ) |
10 |
1
|
a1i |
⊢ ( ⊤ → 𝐴 ⊆ ℝ* ) |
11 |
|
brcnvg |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ ℝ* ) → ( 𝑦 ◡ ≤ 𝑧 ↔ 𝑧 ≤ 𝑦 ) ) |
12 |
11
|
adantlr |
⊢ ( ( ( 𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑧 ∈ ℝ* ) → ( 𝑦 ◡ ≤ 𝑧 ↔ 𝑧 ≤ 𝑦 ) ) |
13 |
|
simpr |
⊢ ( ( ( 𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑧 ∈ ℝ* ) → 𝑧 ∈ ℝ* ) |
14 |
|
simplr |
⊢ ( ( ( 𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑧 ∈ ℝ* ) → 𝑥 ∈ 𝐴 ) |
15 |
|
brcnvg |
⊢ ( ( 𝑧 ∈ ℝ* ∧ 𝑥 ∈ 𝐴 ) → ( 𝑧 ◡ ≤ 𝑥 ↔ 𝑥 ≤ 𝑧 ) ) |
16 |
13 14 15
|
syl2anc |
⊢ ( ( ( 𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑧 ∈ ℝ* ) → ( 𝑧 ◡ ≤ 𝑥 ↔ 𝑥 ≤ 𝑧 ) ) |
17 |
12 16
|
anbi12d |
⊢ ( ( ( 𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑧 ∈ ℝ* ) → ( ( 𝑦 ◡ ≤ 𝑧 ∧ 𝑧 ◡ ≤ 𝑥 ) ↔ ( 𝑧 ≤ 𝑦 ∧ 𝑥 ≤ 𝑧 ) ) ) |
18 |
|
ancom |
⊢ ( ( 𝑧 ≤ 𝑦 ∧ 𝑥 ≤ 𝑧 ) ↔ ( 𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦 ) ) |
19 |
17 18
|
bitrdi |
⊢ ( ( ( 𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑧 ∈ ℝ* ) → ( ( 𝑦 ◡ ≤ 𝑧 ∧ 𝑧 ◡ ≤ 𝑥 ) ↔ ( 𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦 ) ) ) |
20 |
19
|
rabbidva |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) → { 𝑧 ∈ ℝ* ∣ ( 𝑦 ◡ ≤ 𝑧 ∧ 𝑧 ◡ ≤ 𝑥 ) } = { 𝑧 ∈ ℝ* ∣ ( 𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦 ) } ) |
21 |
|
simpr |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ 𝐴 ) |
22 |
1 21
|
sselid |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ ℝ* ) |
23 |
|
simpl |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) → 𝑦 ∈ 𝐴 ) |
24 |
1 23
|
sselid |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) → 𝑦 ∈ ℝ* ) |
25 |
|
iccval |
⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) → ( 𝑥 [,] 𝑦 ) = { 𝑧 ∈ ℝ* ∣ ( 𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦 ) } ) |
26 |
22 24 25
|
syl2anc |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑥 [,] 𝑦 ) = { 𝑧 ∈ ℝ* ∣ ( 𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦 ) } ) |
27 |
2
|
ancoms |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑥 [,] 𝑦 ) ⊆ 𝐴 ) |
28 |
26 27
|
eqsstrrd |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) → { 𝑧 ∈ ℝ* ∣ ( 𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦 ) } ⊆ 𝐴 ) |
29 |
20 28
|
eqsstrd |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) → { 𝑧 ∈ ℝ* ∣ ( 𝑦 ◡ ≤ 𝑧 ∧ 𝑧 ◡ ≤ 𝑥 ) } ⊆ 𝐴 ) |
30 |
29
|
adantl |
⊢ ( ( ⊤ ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) ) → { 𝑧 ∈ ℝ* ∣ ( 𝑦 ◡ ≤ 𝑧 ∧ 𝑧 ◡ ≤ 𝑥 ) } ⊆ 𝐴 ) |
31 |
5 9 10 30
|
ordtrest2 |
⊢ ( ⊤ → ( ordTop ‘ ( ◡ ≤ ∩ ( 𝐴 × 𝐴 ) ) ) = ( ( ordTop ‘ ◡ ≤ ) ↾t 𝐴 ) ) |
32 |
31
|
mptru |
⊢ ( ordTop ‘ ( ◡ ≤ ∩ ( 𝐴 × 𝐴 ) ) ) = ( ( ordTop ‘ ◡ ≤ ) ↾t 𝐴 ) |
33 |
|
tsrps |
⊢ ( ≤ ∈ TosetRel → ≤ ∈ PosetRel ) |
34 |
6 33
|
ax-mp |
⊢ ≤ ∈ PosetRel |
35 |
|
ordtcnv |
⊢ ( ≤ ∈ PosetRel → ( ordTop ‘ ◡ ≤ ) = ( ordTop ‘ ≤ ) ) |
36 |
34 35
|
ax-mp |
⊢ ( ordTop ‘ ◡ ≤ ) = ( ordTop ‘ ≤ ) |
37 |
36
|
oveq1i |
⊢ ( ( ordTop ‘ ◡ ≤ ) ↾t 𝐴 ) = ( ( ordTop ‘ ≤ ) ↾t 𝐴 ) |
38 |
32 37
|
eqtr2i |
⊢ ( ( ordTop ‘ ≤ ) ↾t 𝐴 ) = ( ordTop ‘ ( ◡ ≤ ∩ ( 𝐴 × 𝐴 ) ) ) |