| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cnvordtrestixx.1 | ⊢ 𝐴  ⊆  ℝ* | 
						
							| 2 |  | cnvordtrestixx.2 | ⊢ ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴 )  →  ( 𝑥 [,] 𝑦 )  ⊆  𝐴 ) | 
						
							| 3 |  | lern | ⊢ ℝ*  =  ran   ≤ | 
						
							| 4 |  | df-rn | ⊢ ran   ≤   =  dom  ◡  ≤ | 
						
							| 5 | 3 4 | eqtri | ⊢ ℝ*  =  dom  ◡  ≤ | 
						
							| 6 |  | letsr | ⊢  ≤   ∈   TosetRel | 
						
							| 7 |  | cnvtsr | ⊢ (  ≤   ∈   TosetRel   →  ◡  ≤   ∈   TosetRel  ) | 
						
							| 8 | 6 7 | ax-mp | ⊢ ◡  ≤   ∈   TosetRel | 
						
							| 9 | 8 | a1i | ⊢ ( ⊤  →  ◡  ≤   ∈   TosetRel  ) | 
						
							| 10 | 1 | a1i | ⊢ ( ⊤  →  𝐴  ⊆  ℝ* ) | 
						
							| 11 |  | brcnvg | ⊢ ( ( 𝑦  ∈  𝐴  ∧  𝑧  ∈  ℝ* )  →  ( 𝑦 ◡  ≤  𝑧  ↔  𝑧  ≤  𝑦 ) ) | 
						
							| 12 | 11 | adantlr | ⊢ ( ( ( 𝑦  ∈  𝐴  ∧  𝑥  ∈  𝐴 )  ∧  𝑧  ∈  ℝ* )  →  ( 𝑦 ◡  ≤  𝑧  ↔  𝑧  ≤  𝑦 ) ) | 
						
							| 13 |  | simpr | ⊢ ( ( ( 𝑦  ∈  𝐴  ∧  𝑥  ∈  𝐴 )  ∧  𝑧  ∈  ℝ* )  →  𝑧  ∈  ℝ* ) | 
						
							| 14 |  | simplr | ⊢ ( ( ( 𝑦  ∈  𝐴  ∧  𝑥  ∈  𝐴 )  ∧  𝑧  ∈  ℝ* )  →  𝑥  ∈  𝐴 ) | 
						
							| 15 |  | brcnvg | ⊢ ( ( 𝑧  ∈  ℝ*  ∧  𝑥  ∈  𝐴 )  →  ( 𝑧 ◡  ≤  𝑥  ↔  𝑥  ≤  𝑧 ) ) | 
						
							| 16 | 13 14 15 | syl2anc | ⊢ ( ( ( 𝑦  ∈  𝐴  ∧  𝑥  ∈  𝐴 )  ∧  𝑧  ∈  ℝ* )  →  ( 𝑧 ◡  ≤  𝑥  ↔  𝑥  ≤  𝑧 ) ) | 
						
							| 17 | 12 16 | anbi12d | ⊢ ( ( ( 𝑦  ∈  𝐴  ∧  𝑥  ∈  𝐴 )  ∧  𝑧  ∈  ℝ* )  →  ( ( 𝑦 ◡  ≤  𝑧  ∧  𝑧 ◡  ≤  𝑥 )  ↔  ( 𝑧  ≤  𝑦  ∧  𝑥  ≤  𝑧 ) ) ) | 
						
							| 18 |  | ancom | ⊢ ( ( 𝑧  ≤  𝑦  ∧  𝑥  ≤  𝑧 )  ↔  ( 𝑥  ≤  𝑧  ∧  𝑧  ≤  𝑦 ) ) | 
						
							| 19 | 17 18 | bitrdi | ⊢ ( ( ( 𝑦  ∈  𝐴  ∧  𝑥  ∈  𝐴 )  ∧  𝑧  ∈  ℝ* )  →  ( ( 𝑦 ◡  ≤  𝑧  ∧  𝑧 ◡  ≤  𝑥 )  ↔  ( 𝑥  ≤  𝑧  ∧  𝑧  ≤  𝑦 ) ) ) | 
						
							| 20 | 19 | rabbidva | ⊢ ( ( 𝑦  ∈  𝐴  ∧  𝑥  ∈  𝐴 )  →  { 𝑧  ∈  ℝ*  ∣  ( 𝑦 ◡  ≤  𝑧  ∧  𝑧 ◡  ≤  𝑥 ) }  =  { 𝑧  ∈  ℝ*  ∣  ( 𝑥  ≤  𝑧  ∧  𝑧  ≤  𝑦 ) } ) | 
						
							| 21 |  | simpr | ⊢ ( ( 𝑦  ∈  𝐴  ∧  𝑥  ∈  𝐴 )  →  𝑥  ∈  𝐴 ) | 
						
							| 22 | 1 21 | sselid | ⊢ ( ( 𝑦  ∈  𝐴  ∧  𝑥  ∈  𝐴 )  →  𝑥  ∈  ℝ* ) | 
						
							| 23 |  | simpl | ⊢ ( ( 𝑦  ∈  𝐴  ∧  𝑥  ∈  𝐴 )  →  𝑦  ∈  𝐴 ) | 
						
							| 24 | 1 23 | sselid | ⊢ ( ( 𝑦  ∈  𝐴  ∧  𝑥  ∈  𝐴 )  →  𝑦  ∈  ℝ* ) | 
						
							| 25 |  | iccval | ⊢ ( ( 𝑥  ∈  ℝ*  ∧  𝑦  ∈  ℝ* )  →  ( 𝑥 [,] 𝑦 )  =  { 𝑧  ∈  ℝ*  ∣  ( 𝑥  ≤  𝑧  ∧  𝑧  ≤  𝑦 ) } ) | 
						
							| 26 | 22 24 25 | syl2anc | ⊢ ( ( 𝑦  ∈  𝐴  ∧  𝑥  ∈  𝐴 )  →  ( 𝑥 [,] 𝑦 )  =  { 𝑧  ∈  ℝ*  ∣  ( 𝑥  ≤  𝑧  ∧  𝑧  ≤  𝑦 ) } ) | 
						
							| 27 | 2 | ancoms | ⊢ ( ( 𝑦  ∈  𝐴  ∧  𝑥  ∈  𝐴 )  →  ( 𝑥 [,] 𝑦 )  ⊆  𝐴 ) | 
						
							| 28 | 26 27 | eqsstrrd | ⊢ ( ( 𝑦  ∈  𝐴  ∧  𝑥  ∈  𝐴 )  →  { 𝑧  ∈  ℝ*  ∣  ( 𝑥  ≤  𝑧  ∧  𝑧  ≤  𝑦 ) }  ⊆  𝐴 ) | 
						
							| 29 | 20 28 | eqsstrd | ⊢ ( ( 𝑦  ∈  𝐴  ∧  𝑥  ∈  𝐴 )  →  { 𝑧  ∈  ℝ*  ∣  ( 𝑦 ◡  ≤  𝑧  ∧  𝑧 ◡  ≤  𝑥 ) }  ⊆  𝐴 ) | 
						
							| 30 | 29 | adantl | ⊢ ( ( ⊤  ∧  ( 𝑦  ∈  𝐴  ∧  𝑥  ∈  𝐴 ) )  →  { 𝑧  ∈  ℝ*  ∣  ( 𝑦 ◡  ≤  𝑧  ∧  𝑧 ◡  ≤  𝑥 ) }  ⊆  𝐴 ) | 
						
							| 31 | 5 9 10 30 | ordtrest2 | ⊢ ( ⊤  →  ( ordTop ‘ ( ◡  ≤   ∩  ( 𝐴  ×  𝐴 ) ) )  =  ( ( ordTop ‘ ◡  ≤  )  ↾t  𝐴 ) ) | 
						
							| 32 | 31 | mptru | ⊢ ( ordTop ‘ ( ◡  ≤   ∩  ( 𝐴  ×  𝐴 ) ) )  =  ( ( ordTop ‘ ◡  ≤  )  ↾t  𝐴 ) | 
						
							| 33 |  | tsrps | ⊢ (  ≤   ∈   TosetRel   →   ≤   ∈  PosetRel ) | 
						
							| 34 | 6 33 | ax-mp | ⊢  ≤   ∈  PosetRel | 
						
							| 35 |  | ordtcnv | ⊢ (  ≤   ∈  PosetRel  →  ( ordTop ‘ ◡  ≤  )  =  ( ordTop ‘  ≤  ) ) | 
						
							| 36 | 34 35 | ax-mp | ⊢ ( ordTop ‘ ◡  ≤  )  =  ( ordTop ‘  ≤  ) | 
						
							| 37 | 36 | oveq1i | ⊢ ( ( ordTop ‘ ◡  ≤  )  ↾t  𝐴 )  =  ( ( ordTop ‘  ≤  )  ↾t  𝐴 ) | 
						
							| 38 | 32 37 | eqtr2i | ⊢ ( ( ordTop ‘  ≤  )  ↾t  𝐴 )  =  ( ordTop ‘ ( ◡  ≤   ∩  ( 𝐴  ×  𝐴 ) ) ) |