Metamath Proof Explorer


Theorem cnvordtrestixx

Description: The restriction of the 'greater than' order to an interval gives the same topology as the subspace topology. (Contributed by Thierry Arnoux, 1-Apr-2017)

Ref Expression
Hypotheses cnvordtrestixx.1 𝐴 ⊆ ℝ*
cnvordtrestixx.2 ( ( 𝑥𝐴𝑦𝐴 ) → ( 𝑥 [,] 𝑦 ) ⊆ 𝐴 )
Assertion cnvordtrestixx ( ( ordTop ‘ ≤ ) ↾t 𝐴 ) = ( ordTop ‘ ( ≤ ∩ ( 𝐴 × 𝐴 ) ) )

Proof

Step Hyp Ref Expression
1 cnvordtrestixx.1 𝐴 ⊆ ℝ*
2 cnvordtrestixx.2 ( ( 𝑥𝐴𝑦𝐴 ) → ( 𝑥 [,] 𝑦 ) ⊆ 𝐴 )
3 lern * = ran ≤
4 df-rn ran ≤ = dom
5 3 4 eqtri * = dom
6 letsr ≤ ∈ TosetRel
7 cnvtsr ( ≤ ∈ TosetRel → ≤ ∈ TosetRel )
8 6 7 ax-mp ≤ ∈ TosetRel
9 8 a1i ( ⊤ → ≤ ∈ TosetRel )
10 1 a1i ( ⊤ → 𝐴 ⊆ ℝ* )
11 brcnvg ( ( 𝑦𝐴𝑧 ∈ ℝ* ) → ( 𝑦 𝑧𝑧𝑦 ) )
12 11 adantlr ( ( ( 𝑦𝐴𝑥𝐴 ) ∧ 𝑧 ∈ ℝ* ) → ( 𝑦 𝑧𝑧𝑦 ) )
13 simpr ( ( ( 𝑦𝐴𝑥𝐴 ) ∧ 𝑧 ∈ ℝ* ) → 𝑧 ∈ ℝ* )
14 simplr ( ( ( 𝑦𝐴𝑥𝐴 ) ∧ 𝑧 ∈ ℝ* ) → 𝑥𝐴 )
15 brcnvg ( ( 𝑧 ∈ ℝ*𝑥𝐴 ) → ( 𝑧 𝑥𝑥𝑧 ) )
16 13 14 15 syl2anc ( ( ( 𝑦𝐴𝑥𝐴 ) ∧ 𝑧 ∈ ℝ* ) → ( 𝑧 𝑥𝑥𝑧 ) )
17 12 16 anbi12d ( ( ( 𝑦𝐴𝑥𝐴 ) ∧ 𝑧 ∈ ℝ* ) → ( ( 𝑦 𝑧𝑧 𝑥 ) ↔ ( 𝑧𝑦𝑥𝑧 ) ) )
18 ancom ( ( 𝑧𝑦𝑥𝑧 ) ↔ ( 𝑥𝑧𝑧𝑦 ) )
19 17 18 bitrdi ( ( ( 𝑦𝐴𝑥𝐴 ) ∧ 𝑧 ∈ ℝ* ) → ( ( 𝑦 𝑧𝑧 𝑥 ) ↔ ( 𝑥𝑧𝑧𝑦 ) ) )
20 19 rabbidva ( ( 𝑦𝐴𝑥𝐴 ) → { 𝑧 ∈ ℝ* ∣ ( 𝑦 𝑧𝑧 𝑥 ) } = { 𝑧 ∈ ℝ* ∣ ( 𝑥𝑧𝑧𝑦 ) } )
21 simpr ( ( 𝑦𝐴𝑥𝐴 ) → 𝑥𝐴 )
22 1 21 sselid ( ( 𝑦𝐴𝑥𝐴 ) → 𝑥 ∈ ℝ* )
23 simpl ( ( 𝑦𝐴𝑥𝐴 ) → 𝑦𝐴 )
24 1 23 sselid ( ( 𝑦𝐴𝑥𝐴 ) → 𝑦 ∈ ℝ* )
25 iccval ( ( 𝑥 ∈ ℝ*𝑦 ∈ ℝ* ) → ( 𝑥 [,] 𝑦 ) = { 𝑧 ∈ ℝ* ∣ ( 𝑥𝑧𝑧𝑦 ) } )
26 22 24 25 syl2anc ( ( 𝑦𝐴𝑥𝐴 ) → ( 𝑥 [,] 𝑦 ) = { 𝑧 ∈ ℝ* ∣ ( 𝑥𝑧𝑧𝑦 ) } )
27 2 ancoms ( ( 𝑦𝐴𝑥𝐴 ) → ( 𝑥 [,] 𝑦 ) ⊆ 𝐴 )
28 26 27 eqsstrrd ( ( 𝑦𝐴𝑥𝐴 ) → { 𝑧 ∈ ℝ* ∣ ( 𝑥𝑧𝑧𝑦 ) } ⊆ 𝐴 )
29 20 28 eqsstrd ( ( 𝑦𝐴𝑥𝐴 ) → { 𝑧 ∈ ℝ* ∣ ( 𝑦 𝑧𝑧 𝑥 ) } ⊆ 𝐴 )
30 29 adantl ( ( ⊤ ∧ ( 𝑦𝐴𝑥𝐴 ) ) → { 𝑧 ∈ ℝ* ∣ ( 𝑦 𝑧𝑧 𝑥 ) } ⊆ 𝐴 )
31 5 9 10 30 ordtrest2 ( ⊤ → ( ordTop ‘ ( ≤ ∩ ( 𝐴 × 𝐴 ) ) ) = ( ( ordTop ‘ ≤ ) ↾t 𝐴 ) )
32 31 mptru ( ordTop ‘ ( ≤ ∩ ( 𝐴 × 𝐴 ) ) ) = ( ( ordTop ‘ ≤ ) ↾t 𝐴 )
33 tsrps ( ≤ ∈ TosetRel → ≤ ∈ PosetRel )
34 6 33 ax-mp ≤ ∈ PosetRel
35 ordtcnv ( ≤ ∈ PosetRel → ( ordTop ‘ ≤ ) = ( ordTop ‘ ≤ ) )
36 34 35 ax-mp ( ordTop ‘ ≤ ) = ( ordTop ‘ ≤ )
37 36 oveq1i ( ( ordTop ‘ ≤ ) ↾t 𝐴 ) = ( ( ordTop ‘ ≤ ) ↾t 𝐴 )
38 32 37 eqtr2i ( ( ordTop ‘ ≤ ) ↾t 𝐴 ) = ( ordTop ‘ ( ≤ ∩ ( 𝐴 × 𝐴 ) ) )