Metamath Proof Explorer


Theorem cnvref5

Description: Two ways to say that a relation is a subclass of the identity relation. (Contributed by Peter Mazsa, 26-Jun-2019)

Ref Expression
Assertion cnvref5 ( Rel 𝑅 → ( 𝑅 ⊆ I ↔ ∀ 𝑥𝑦 ( 𝑥 𝑅 𝑦𝑥 = 𝑦 ) ) )

Proof

Step Hyp Ref Expression
1 ssrel3 ( Rel 𝑅 → ( 𝑅 ⊆ I ↔ ∀ 𝑥𝑦 ( 𝑥 𝑅 𝑦𝑥 I 𝑦 ) ) )
2 ideqg ( 𝑦 ∈ V → ( 𝑥 I 𝑦𝑥 = 𝑦 ) )
3 2 elv ( 𝑥 I 𝑦𝑥 = 𝑦 )
4 3 imbi2i ( ( 𝑥 𝑅 𝑦𝑥 I 𝑦 ) ↔ ( 𝑥 𝑅 𝑦𝑥 = 𝑦 ) )
5 4 2albii ( ∀ 𝑥𝑦 ( 𝑥 𝑅 𝑦𝑥 I 𝑦 ) ↔ ∀ 𝑥𝑦 ( 𝑥 𝑅 𝑦𝑥 = 𝑦 ) )
6 1 5 bitrdi ( Rel 𝑅 → ( 𝑅 ⊆ I ↔ ∀ 𝑥𝑦 ( 𝑥 𝑅 𝑦𝑥 = 𝑦 ) ) )