Description: Two ways to say that a relation is a subclass of the identity relation. (Contributed by Peter Mazsa, 26-Jun-2019)
Ref | Expression | ||
---|---|---|---|
Assertion | cnvref5 | ⊢ ( Rel 𝑅 → ( 𝑅 ⊆ I ↔ ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑅 𝑦 → 𝑥 = 𝑦 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrel3 | ⊢ ( Rel 𝑅 → ( 𝑅 ⊆ I ↔ ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑅 𝑦 → 𝑥 I 𝑦 ) ) ) | |
2 | ideqg | ⊢ ( 𝑦 ∈ V → ( 𝑥 I 𝑦 ↔ 𝑥 = 𝑦 ) ) | |
3 | 2 | elv | ⊢ ( 𝑥 I 𝑦 ↔ 𝑥 = 𝑦 ) |
4 | 3 | imbi2i | ⊢ ( ( 𝑥 𝑅 𝑦 → 𝑥 I 𝑦 ) ↔ ( 𝑥 𝑅 𝑦 → 𝑥 = 𝑦 ) ) |
5 | 4 | 2albii | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑅 𝑦 → 𝑥 I 𝑦 ) ↔ ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑅 𝑦 → 𝑥 = 𝑦 ) ) |
6 | 1 5 | bitrdi | ⊢ ( Rel 𝑅 → ( 𝑅 ⊆ I ↔ ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑅 𝑦 → 𝑥 = 𝑦 ) ) ) |