| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-res | ⊢ ( ◡ 𝑅  ↾  𝐵 )  =  ( ◡ 𝑅  ∩  ( 𝐵  ×  V ) ) | 
						
							| 2 | 1 | cnveqi | ⊢ ◡ ( ◡ 𝑅  ↾  𝐵 )  =  ◡ ( ◡ 𝑅  ∩  ( 𝐵  ×  V ) ) | 
						
							| 3 |  | cnvin | ⊢ ◡ ( ◡ 𝑅  ∩  ( 𝐵  ×  V ) )  =  ( ◡ ◡ 𝑅  ∩  ◡ ( 𝐵  ×  V ) ) | 
						
							| 4 |  | cnvcnv | ⊢ ◡ ◡ 𝑅  =  ( 𝑅  ∩  ( V  ×  V ) ) | 
						
							| 5 |  | cnvxp | ⊢ ◡ ( 𝐵  ×  V )  =  ( V  ×  𝐵 ) | 
						
							| 6 | 4 5 | ineq12i | ⊢ ( ◡ ◡ 𝑅  ∩  ◡ ( 𝐵  ×  V ) )  =  ( ( 𝑅  ∩  ( V  ×  V ) )  ∩  ( V  ×  𝐵 ) ) | 
						
							| 7 |  | inass | ⊢ ( ( 𝑅  ∩  ( V  ×  V ) )  ∩  ( V  ×  𝐵 ) )  =  ( 𝑅  ∩  ( ( V  ×  V )  ∩  ( V  ×  𝐵 ) ) ) | 
						
							| 8 |  | inxp | ⊢ ( ( V  ×  V )  ∩  ( V  ×  𝐵 ) )  =  ( ( V  ∩  V )  ×  ( V  ∩  𝐵 ) ) | 
						
							| 9 |  | inv1 | ⊢ ( V  ∩  V )  =  V | 
						
							| 10 | 9 | eqcomi | ⊢ V  =  ( V  ∩  V ) | 
						
							| 11 |  | ssv | ⊢ 𝐵  ⊆  V | 
						
							| 12 |  | ssid | ⊢ 𝐵  ⊆  𝐵 | 
						
							| 13 | 11 12 | ssini | ⊢ 𝐵  ⊆  ( V  ∩  𝐵 ) | 
						
							| 14 |  | inss2 | ⊢ ( V  ∩  𝐵 )  ⊆  𝐵 | 
						
							| 15 | 13 14 | eqssi | ⊢ 𝐵  =  ( V  ∩  𝐵 ) | 
						
							| 16 | 10 15 | xpeq12i | ⊢ ( V  ×  𝐵 )  =  ( ( V  ∩  V )  ×  ( V  ∩  𝐵 ) ) | 
						
							| 17 | 8 16 | eqtr4i | ⊢ ( ( V  ×  V )  ∩  ( V  ×  𝐵 ) )  =  ( V  ×  𝐵 ) | 
						
							| 18 | 17 | ineq2i | ⊢ ( 𝑅  ∩  ( ( V  ×  V )  ∩  ( V  ×  𝐵 ) ) )  =  ( 𝑅  ∩  ( V  ×  𝐵 ) ) | 
						
							| 19 | 6 7 18 | 3eqtri | ⊢ ( ◡ ◡ 𝑅  ∩  ◡ ( 𝐵  ×  V ) )  =  ( 𝑅  ∩  ( V  ×  𝐵 ) ) | 
						
							| 20 | 2 3 19 | 3eqtri | ⊢ ◡ ( ◡ 𝑅  ↾  𝐵 )  =  ( 𝑅  ∩  ( V  ×  𝐵 ) ) |