Description: Converse of a restricted identity function. (Contributed by FL, 4-Mar-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cnvresid | ⊢ ◡ ( I ↾ 𝐴 ) = ( I ↾ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvi | ⊢ ◡ I = I | |
| 2 | 1 | eqcomi | ⊢ I = ◡ I |
| 3 | funi | ⊢ Fun I | |
| 4 | funeq | ⊢ ( I = ◡ I → ( Fun I ↔ Fun ◡ I ) ) | |
| 5 | 3 4 | mpbii | ⊢ ( I = ◡ I → Fun ◡ I ) |
| 6 | funcnvres | ⊢ ( Fun ◡ I → ◡ ( I ↾ 𝐴 ) = ( ◡ I ↾ ( I “ 𝐴 ) ) ) | |
| 7 | imai | ⊢ ( I “ 𝐴 ) = 𝐴 | |
| 8 | 1 7 | reseq12i | ⊢ ( ◡ I ↾ ( I “ 𝐴 ) ) = ( I ↾ 𝐴 ) |
| 9 | 6 8 | eqtrdi | ⊢ ( Fun ◡ I → ◡ ( I ↾ 𝐴 ) = ( I ↾ 𝐴 ) ) |
| 10 | 2 5 9 | mp2b | ⊢ ◡ ( I ↾ 𝐴 ) = ( I ↾ 𝐴 ) |