Step |
Hyp |
Ref |
Expression |
1 |
|
19.41v |
⊢ ( ∃ 𝑠 ( ( 𝑠 ∈ 𝐵 ∧ 〈 𝑠 , 𝑡 〉 ∈ ◡ 𝐹 ) ∧ 𝑡 ∈ 𝐴 ) ↔ ( ∃ 𝑠 ( 𝑠 ∈ 𝐵 ∧ 〈 𝑠 , 𝑡 〉 ∈ ◡ 𝐹 ) ∧ 𝑡 ∈ 𝐴 ) ) |
2 |
|
vex |
⊢ 𝑠 ∈ V |
3 |
2
|
opelresi |
⊢ ( 〈 𝑡 , 𝑠 〉 ∈ ( 𝐹 ↾ 𝐴 ) ↔ ( 𝑡 ∈ 𝐴 ∧ 〈 𝑡 , 𝑠 〉 ∈ 𝐹 ) ) |
4 |
|
vex |
⊢ 𝑡 ∈ V |
5 |
2 4
|
opelcnv |
⊢ ( 〈 𝑠 , 𝑡 〉 ∈ ◡ ( 𝐹 ↾ 𝐴 ) ↔ 〈 𝑡 , 𝑠 〉 ∈ ( 𝐹 ↾ 𝐴 ) ) |
6 |
2 4
|
opelcnv |
⊢ ( 〈 𝑠 , 𝑡 〉 ∈ ◡ 𝐹 ↔ 〈 𝑡 , 𝑠 〉 ∈ 𝐹 ) |
7 |
6
|
anbi2ci |
⊢ ( ( 〈 𝑠 , 𝑡 〉 ∈ ◡ 𝐹 ∧ 𝑡 ∈ 𝐴 ) ↔ ( 𝑡 ∈ 𝐴 ∧ 〈 𝑡 , 𝑠 〉 ∈ 𝐹 ) ) |
8 |
3 5 7
|
3bitr4i |
⊢ ( 〈 𝑠 , 𝑡 〉 ∈ ◡ ( 𝐹 ↾ 𝐴 ) ↔ ( 〈 𝑠 , 𝑡 〉 ∈ ◡ 𝐹 ∧ 𝑡 ∈ 𝐴 ) ) |
9 |
8
|
bianass |
⊢ ( ( 𝑠 ∈ 𝐵 ∧ 〈 𝑠 , 𝑡 〉 ∈ ◡ ( 𝐹 ↾ 𝐴 ) ) ↔ ( ( 𝑠 ∈ 𝐵 ∧ 〈 𝑠 , 𝑡 〉 ∈ ◡ 𝐹 ) ∧ 𝑡 ∈ 𝐴 ) ) |
10 |
9
|
exbii |
⊢ ( ∃ 𝑠 ( 𝑠 ∈ 𝐵 ∧ 〈 𝑠 , 𝑡 〉 ∈ ◡ ( 𝐹 ↾ 𝐴 ) ) ↔ ∃ 𝑠 ( ( 𝑠 ∈ 𝐵 ∧ 〈 𝑠 , 𝑡 〉 ∈ ◡ 𝐹 ) ∧ 𝑡 ∈ 𝐴 ) ) |
11 |
4
|
elima3 |
⊢ ( 𝑡 ∈ ( ◡ 𝐹 “ 𝐵 ) ↔ ∃ 𝑠 ( 𝑠 ∈ 𝐵 ∧ 〈 𝑠 , 𝑡 〉 ∈ ◡ 𝐹 ) ) |
12 |
11
|
anbi1i |
⊢ ( ( 𝑡 ∈ ( ◡ 𝐹 “ 𝐵 ) ∧ 𝑡 ∈ 𝐴 ) ↔ ( ∃ 𝑠 ( 𝑠 ∈ 𝐵 ∧ 〈 𝑠 , 𝑡 〉 ∈ ◡ 𝐹 ) ∧ 𝑡 ∈ 𝐴 ) ) |
13 |
1 10 12
|
3bitr4i |
⊢ ( ∃ 𝑠 ( 𝑠 ∈ 𝐵 ∧ 〈 𝑠 , 𝑡 〉 ∈ ◡ ( 𝐹 ↾ 𝐴 ) ) ↔ ( 𝑡 ∈ ( ◡ 𝐹 “ 𝐵 ) ∧ 𝑡 ∈ 𝐴 ) ) |
14 |
4
|
elima3 |
⊢ ( 𝑡 ∈ ( ◡ ( 𝐹 ↾ 𝐴 ) “ 𝐵 ) ↔ ∃ 𝑠 ( 𝑠 ∈ 𝐵 ∧ 〈 𝑠 , 𝑡 〉 ∈ ◡ ( 𝐹 ↾ 𝐴 ) ) ) |
15 |
|
elin |
⊢ ( 𝑡 ∈ ( ( ◡ 𝐹 “ 𝐵 ) ∩ 𝐴 ) ↔ ( 𝑡 ∈ ( ◡ 𝐹 “ 𝐵 ) ∧ 𝑡 ∈ 𝐴 ) ) |
16 |
13 14 15
|
3bitr4i |
⊢ ( 𝑡 ∈ ( ◡ ( 𝐹 ↾ 𝐴 ) “ 𝐵 ) ↔ 𝑡 ∈ ( ( ◡ 𝐹 “ 𝐵 ) ∩ 𝐴 ) ) |
17 |
16
|
eqriv |
⊢ ( ◡ ( 𝐹 ↾ 𝐴 ) “ 𝐵 ) = ( ( ◡ 𝐹 “ 𝐵 ) ∩ 𝐴 ) |