Metamath Proof Explorer


Theorem cnvsn

Description: Converse of a singleton of an ordered pair. (Contributed by NM, 11-May-1998) (Revised by Mario Carneiro, 26-Apr-2015) (Proof shortened by BJ, 12-Feb-2022)

Ref Expression
Hypotheses cnvsn.1 𝐴 ∈ V
cnvsn.2 𝐵 ∈ V
Assertion cnvsn { ⟨ 𝐴 , 𝐵 ⟩ } = { ⟨ 𝐵 , 𝐴 ⟩ }

Proof

Step Hyp Ref Expression
1 cnvsn.1 𝐴 ∈ V
2 cnvsn.2 𝐵 ∈ V
3 cnvsng ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → { ⟨ 𝐴 , 𝐵 ⟩ } = { ⟨ 𝐵 , 𝐴 ⟩ } )
4 1 2 3 mp2an { ⟨ 𝐴 , 𝐵 ⟩ } = { ⟨ 𝐵 , 𝐴 ⟩ }