Description: Subset theorem for converse. (Contributed by NM, 22-Mar-1998) (Proof shortened by Kyle Wyonch, 27-Apr-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cnvss | ⊢ ( 𝐴 ⊆ 𝐵 → ◡ 𝐴 ⊆ ◡ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssbr | ⊢ ( 𝐴 ⊆ 𝐵 → ( 𝑦 𝐴 𝑥 → 𝑦 𝐵 𝑥 ) ) | |
| 2 | 1 | ssopab2dv | ⊢ ( 𝐴 ⊆ 𝐵 → { 〈 𝑥 , 𝑦 〉 ∣ 𝑦 𝐴 𝑥 } ⊆ { 〈 𝑥 , 𝑦 〉 ∣ 𝑦 𝐵 𝑥 } ) |
| 3 | df-cnv | ⊢ ◡ 𝐴 = { 〈 𝑥 , 𝑦 〉 ∣ 𝑦 𝐴 𝑥 } | |
| 4 | df-cnv | ⊢ ◡ 𝐵 = { 〈 𝑥 , 𝑦 〉 ∣ 𝑦 𝐵 𝑥 } | |
| 5 | 2 3 4 | 3sstr4g | ⊢ ( 𝐴 ⊆ 𝐵 → ◡ 𝐴 ⊆ ◡ 𝐵 ) |