Metamath Proof Explorer


Theorem cnvsym

Description: Two ways of saying a relation is symmetric. Similar to definition of symmetry in Schechter p. 51. (Contributed by NM, 28-Dec-1996) (Proof shortened by Andrew Salmon, 27-Aug-2011) (Proof shortened by SN, 23-Dec-2024) Avoid ax-11 . (Revised by BTernaryTau, 29-Dec-2024)

Ref Expression
Assertion cnvsym ( 𝑅𝑅 ↔ ∀ 𝑥𝑦 ( 𝑥 𝑅 𝑦𝑦 𝑅 𝑥 ) )

Proof

Step Hyp Ref Expression
1 relcnv Rel 𝑅
2 ssrel3 ( Rel 𝑅 → ( 𝑅𝑅 ↔ ∀ 𝑦𝑥 ( 𝑦 𝑅 𝑥𝑦 𝑅 𝑥 ) ) )
3 1 2 ax-mp ( 𝑅𝑅 ↔ ∀ 𝑦𝑥 ( 𝑦 𝑅 𝑥𝑦 𝑅 𝑥 ) )
4 breq1 ( 𝑦 = 𝑧 → ( 𝑦 𝑅 𝑥𝑧 𝑅 𝑥 ) )
5 breq1 ( 𝑦 = 𝑧 → ( 𝑦 𝑅 𝑥𝑧 𝑅 𝑥 ) )
6 4 5 imbi12d ( 𝑦 = 𝑧 → ( ( 𝑦 𝑅 𝑥𝑦 𝑅 𝑥 ) ↔ ( 𝑧 𝑅 𝑥𝑧 𝑅 𝑥 ) ) )
7 breq2 ( 𝑥 = 𝑧 → ( 𝑦 𝑅 𝑥𝑦 𝑅 𝑧 ) )
8 breq2 ( 𝑥 = 𝑧 → ( 𝑦 𝑅 𝑥𝑦 𝑅 𝑧 ) )
9 7 8 imbi12d ( 𝑥 = 𝑧 → ( ( 𝑦 𝑅 𝑥𝑦 𝑅 𝑥 ) ↔ ( 𝑦 𝑅 𝑧𝑦 𝑅 𝑧 ) ) )
10 6 9 alcomw ( ∀ 𝑦𝑥 ( 𝑦 𝑅 𝑥𝑦 𝑅 𝑥 ) ↔ ∀ 𝑥𝑦 ( 𝑦 𝑅 𝑥𝑦 𝑅 𝑥 ) )
11 vex 𝑦 ∈ V
12 vex 𝑥 ∈ V
13 11 12 brcnv ( 𝑦 𝑅 𝑥𝑥 𝑅 𝑦 )
14 13 imbi1i ( ( 𝑦 𝑅 𝑥𝑦 𝑅 𝑥 ) ↔ ( 𝑥 𝑅 𝑦𝑦 𝑅 𝑥 ) )
15 14 2albii ( ∀ 𝑥𝑦 ( 𝑦 𝑅 𝑥𝑦 𝑅 𝑥 ) ↔ ∀ 𝑥𝑦 ( 𝑥 𝑅 𝑦𝑦 𝑅 𝑥 ) )
16 3 10 15 3bitri ( 𝑅𝑅 ↔ ∀ 𝑥𝑦 ( 𝑥 𝑅 𝑦𝑦 𝑅 𝑥 ) )