Step |
Hyp |
Ref |
Expression |
1 |
|
relcnv |
⊢ Rel ◡ 𝑅 |
2 |
|
ssrel3 |
⊢ ( Rel ◡ 𝑅 → ( ◡ 𝑅 ⊆ 𝑅 ↔ ∀ 𝑦 ∀ 𝑥 ( 𝑦 ◡ 𝑅 𝑥 → 𝑦 𝑅 𝑥 ) ) ) |
3 |
1 2
|
ax-mp |
⊢ ( ◡ 𝑅 ⊆ 𝑅 ↔ ∀ 𝑦 ∀ 𝑥 ( 𝑦 ◡ 𝑅 𝑥 → 𝑦 𝑅 𝑥 ) ) |
4 |
|
breq1 |
⊢ ( 𝑦 = 𝑧 → ( 𝑦 ◡ 𝑅 𝑥 ↔ 𝑧 ◡ 𝑅 𝑥 ) ) |
5 |
|
breq1 |
⊢ ( 𝑦 = 𝑧 → ( 𝑦 𝑅 𝑥 ↔ 𝑧 𝑅 𝑥 ) ) |
6 |
4 5
|
imbi12d |
⊢ ( 𝑦 = 𝑧 → ( ( 𝑦 ◡ 𝑅 𝑥 → 𝑦 𝑅 𝑥 ) ↔ ( 𝑧 ◡ 𝑅 𝑥 → 𝑧 𝑅 𝑥 ) ) ) |
7 |
|
breq2 |
⊢ ( 𝑥 = 𝑧 → ( 𝑦 ◡ 𝑅 𝑥 ↔ 𝑦 ◡ 𝑅 𝑧 ) ) |
8 |
|
breq2 |
⊢ ( 𝑥 = 𝑧 → ( 𝑦 𝑅 𝑥 ↔ 𝑦 𝑅 𝑧 ) ) |
9 |
7 8
|
imbi12d |
⊢ ( 𝑥 = 𝑧 → ( ( 𝑦 ◡ 𝑅 𝑥 → 𝑦 𝑅 𝑥 ) ↔ ( 𝑦 ◡ 𝑅 𝑧 → 𝑦 𝑅 𝑧 ) ) ) |
10 |
6 9
|
alcomw |
⊢ ( ∀ 𝑦 ∀ 𝑥 ( 𝑦 ◡ 𝑅 𝑥 → 𝑦 𝑅 𝑥 ) ↔ ∀ 𝑥 ∀ 𝑦 ( 𝑦 ◡ 𝑅 𝑥 → 𝑦 𝑅 𝑥 ) ) |
11 |
|
vex |
⊢ 𝑦 ∈ V |
12 |
|
vex |
⊢ 𝑥 ∈ V |
13 |
11 12
|
brcnv |
⊢ ( 𝑦 ◡ 𝑅 𝑥 ↔ 𝑥 𝑅 𝑦 ) |
14 |
13
|
imbi1i |
⊢ ( ( 𝑦 ◡ 𝑅 𝑥 → 𝑦 𝑅 𝑥 ) ↔ ( 𝑥 𝑅 𝑦 → 𝑦 𝑅 𝑥 ) ) |
15 |
14
|
2albii |
⊢ ( ∀ 𝑥 ∀ 𝑦 ( 𝑦 ◡ 𝑅 𝑥 → 𝑦 𝑅 𝑥 ) ↔ ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑅 𝑦 → 𝑦 𝑅 𝑥 ) ) |
16 |
3 10 15
|
3bitri |
⊢ ( ◡ 𝑅 ⊆ 𝑅 ↔ ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑅 𝑦 → 𝑦 𝑅 𝑥 ) ) |